Bin Wang, Ziyuan Tang, Yuxiang Song, Lu Liu, Weitao Yang, Longsheng Wu
{"title":"Design and Study of a Novel P-Type Junctionless FET for High Performance of CMOS Inverter.","authors":"Bin Wang, Ziyuan Tang, Yuxiang Song, Lu Liu, Weitao Yang, Longsheng Wu","doi":"10.3390/mi16010106","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, a novel p-type junctionless field effect transistor (PJLFET) based on a partially depleted silicon-on-insulator (PD-SOI) is proposed and investigated. The novel PJLFET integrates a buried N+-doped layer under the channel to enable the device to be turned off, leading to a special work mechanism and optimized performance. Simulation results show that the proposed PJLFET demonstrates an I<sub>on</sub>/I<sub>off</sub> ratio of more than seven orders of magnitude, with I<sub>on</sub> reaching up to 2.56 × 10<sup>-4</sup> A/μm, I<sub>off</sub> as low as 3.99 × 10<sup>-12</sup> A/μm, and a threshold voltage reduced to -0.43 V, exhibiting excellent electrical characteristics. Furthermore, a new CMOS inverter comprising a proposed PJLFET and a conventional NMOSFET is designed. With the identical geometric dimensions and gate electrode, the pull-up and pull-down driving capabilities of the proposed CMOS are equivalent, showing the potential for application in high-performance chips in the future.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767343/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16010106","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a novel p-type junctionless field effect transistor (PJLFET) based on a partially depleted silicon-on-insulator (PD-SOI) is proposed and investigated. The novel PJLFET integrates a buried N+-doped layer under the channel to enable the device to be turned off, leading to a special work mechanism and optimized performance. Simulation results show that the proposed PJLFET demonstrates an Ion/Ioff ratio of more than seven orders of magnitude, with Ion reaching up to 2.56 × 10-4 A/μm, Ioff as low as 3.99 × 10-12 A/μm, and a threshold voltage reduced to -0.43 V, exhibiting excellent electrical characteristics. Furthermore, a new CMOS inverter comprising a proposed PJLFET and a conventional NMOSFET is designed. With the identical geometric dimensions and gate electrode, the pull-up and pull-down driving capabilities of the proposed CMOS are equivalent, showing the potential for application in high-performance chips in the future.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.