How do trees fail in intraspecific competition? A test for the roles of non-structural carbohydrates and stoichiometries in Pinus massoniana

IF 6.1 2区 生物学 Q1 PLANT SCIENCES Plant Physiology and Biochemistry Pub Date : 2025-01-19 DOI:10.1016/j.plaphy.2025.109530
Guiwu Zou , Kang Xu , Junhuo Cai , Qingpei Yang , Jun Liu , Yuanqiu Liu , Xin Chen , Genxuan Wang
{"title":"How do trees fail in intraspecific competition? A test for the roles of non-structural carbohydrates and stoichiometries in Pinus massoniana","authors":"Guiwu Zou ,&nbsp;Kang Xu ,&nbsp;Junhuo Cai ,&nbsp;Qingpei Yang ,&nbsp;Jun Liu ,&nbsp;Yuanqiu Liu ,&nbsp;Xin Chen ,&nbsp;Genxuan Wang","doi":"10.1016/j.plaphy.2025.109530","DOIUrl":null,"url":null,"abstract":"<div><div>Competition is ubiquitous and an important driver of tree mortality. Non-structural carbohydrates (NSCs, including soluble sugars and starch) and C-N-P stoichiometries are affected by the competitive status of trees and, in turn, physiologically determine tree growth and survival in competition. However, the physiological mechanisms behind tree mortality caused by intraspecific competition remain unclear. Here, we ask how the performance (growth vigour) of trees in intraspecific competition relates to NSC and C-N-P stoichiometry traits. Through the field surveys at neighbourhood levels, we demonstrated that competition is responsible for tree mortality in an even-aged <em>Pinus massoniana</em> forest. The whole NSCs and C-N-P stoichiometries of trees in different growth vigour classes (i.e., flourishing, moderate, and dying) were then analysed to elucidate how trees fail in competition. We found that (1) the concentrations of NSCs and their components in stems, coarse roots and fine roots were constant across tree growth vigour classes, but were significantly lower in the leaves, twigs and branches of moderate and dying trees than those of flourishing trees, and (2) the C, N and P concentration and their respective ratios were constant in all the tissues across tree growth vigour classes, but the nitrogen stoichiometric homeostasis index (<em>H</em><sub>N</sub>) of flourishing trees was significantly higher than that of moderate and dying trees. The results demonstrated that both carbohydrate deficiency and low stoichiometric homeostasis are potential physiological drivers underlying tree mortality caused by intraspecific competition. This study also emphasizes the importance of considering stoichiometric homeostasis in research on tree competition and forest dynamics.</div></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"220 ","pages":"Article 109530"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0981942825000580","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Competition is ubiquitous and an important driver of tree mortality. Non-structural carbohydrates (NSCs, including soluble sugars and starch) and C-N-P stoichiometries are affected by the competitive status of trees and, in turn, physiologically determine tree growth and survival in competition. However, the physiological mechanisms behind tree mortality caused by intraspecific competition remain unclear. Here, we ask how the performance (growth vigour) of trees in intraspecific competition relates to NSC and C-N-P stoichiometry traits. Through the field surveys at neighbourhood levels, we demonstrated that competition is responsible for tree mortality in an even-aged Pinus massoniana forest. The whole NSCs and C-N-P stoichiometries of trees in different growth vigour classes (i.e., flourishing, moderate, and dying) were then analysed to elucidate how trees fail in competition. We found that (1) the concentrations of NSCs and their components in stems, coarse roots and fine roots were constant across tree growth vigour classes, but were significantly lower in the leaves, twigs and branches of moderate and dying trees than those of flourishing trees, and (2) the C, N and P concentration and their respective ratios were constant in all the tissues across tree growth vigour classes, but the nitrogen stoichiometric homeostasis index (HN) of flourishing trees was significantly higher than that of moderate and dying trees. The results demonstrated that both carbohydrate deficiency and low stoichiometric homeostasis are potential physiological drivers underlying tree mortality caused by intraspecific competition. This study also emphasizes the importance of considering stoichiometric homeostasis in research on tree competition and forest dynamics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
树木如何在种内竞争中失败?对松类非结构性碳水化合物作用的检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Physiology and Biochemistry
Plant Physiology and Biochemistry 生物-植物科学
CiteScore
11.10
自引率
3.10%
发文量
410
审稿时长
33 days
期刊介绍: Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement. Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB. Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.
期刊最新文献
Corrigendum to "Lily (Lilium spp.) LhERF061 suppresses anthocyanin biosynthesis by inhibiting LhMYBSPLATTER and LhDFR expression and interacting with LhMYBSPLATTER" [2024 Nov 22:219:109325]. Overexpression of the patatin-related phospholipase A gene, PgpPLAIIIβ, in ginseng adventitious roots reduces lignin and ginsenoside content while increasing fatty acid content New insights into the responses of phosphite, as a plant biostimulator, on PSII photochemistry, gas exchange, redox state and antioxidant system in maize plants under boron toxicity Physiological mechanisms of heavy metal detoxification in tomato plants mediated by endophytic fungi under nickel and cadmium stress Iron deficiency and toxicity trigger divergent metabolic responses and adaptive plasticity in Ulmus pumila: Insights from integrated transcriptomic and metabolomic analyses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1