Samson Mugisha, Shahnawaz A Baba, Shreyas Labhsetwar, Devam Dave, Aran Zakeri, Richard Klemke, Jay S Desgrosellier
{"title":"S100A8/A9 innate immune signaling as a distinct mechanism driving progression of smoking-related breast cancers.","authors":"Samson Mugisha, Shahnawaz A Baba, Shreyas Labhsetwar, Devam Dave, Aran Zakeri, Richard Klemke, Jay S Desgrosellier","doi":"10.1038/s41388-025-03276-5","DOIUrl":null,"url":null,"abstract":"<p><p>Smoking plays an underappreciated role in breast cancer progression, increasing recurrence and mortality in patients. Here, we show that S100A8/A9 innate immune signaling is a molecular mechanism that identifies smoking-related breast cancers and underlies their enhanced malignancy. In contrast to acute exposure, chronic nicotine increased tumorigenicity and reprogrammed breast cancer cells to express innate immune response genes. This required the α7 nicotinic acetylcholine receptor, which elicited dynamic changes in cell differentiation, proliferation, and expression of secreted cytokines, such as S100A8 and S100A9, as assessed by unbiased scRNA-seq. Indeed, pharmacologic or genetic inhibition of S100A8/A9-RAGE receptor signaling blocked nicotine's tumor-promoting effects. We also discovered Syntaphilin (SNPH) as an S100A8/A9-dependent gene enriched specifically in estrogen receptor-negative (ER<sup>-</sup>) cancers from former smokers, linking this response to patient disease. Together, our findings describe a new α7 nAChR-S100A8/A9-Syntaphilin immune signaling module that drives nicotine-induced tumor progression and distinguishes smoking-related patient disease as a distinct subset of aggressive breast cancers.</p>","PeriodicalId":19524,"journal":{"name":"Oncogene","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncogene","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41388-025-03276-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Smoking plays an underappreciated role in breast cancer progression, increasing recurrence and mortality in patients. Here, we show that S100A8/A9 innate immune signaling is a molecular mechanism that identifies smoking-related breast cancers and underlies their enhanced malignancy. In contrast to acute exposure, chronic nicotine increased tumorigenicity and reprogrammed breast cancer cells to express innate immune response genes. This required the α7 nicotinic acetylcholine receptor, which elicited dynamic changes in cell differentiation, proliferation, and expression of secreted cytokines, such as S100A8 and S100A9, as assessed by unbiased scRNA-seq. Indeed, pharmacologic or genetic inhibition of S100A8/A9-RAGE receptor signaling blocked nicotine's tumor-promoting effects. We also discovered Syntaphilin (SNPH) as an S100A8/A9-dependent gene enriched specifically in estrogen receptor-negative (ER-) cancers from former smokers, linking this response to patient disease. Together, our findings describe a new α7 nAChR-S100A8/A9-Syntaphilin immune signaling module that drives nicotine-induced tumor progression and distinguishes smoking-related patient disease as a distinct subset of aggressive breast cancers.
期刊介绍:
Oncogene is dedicated to advancing our understanding of cancer processes through the publication of exceptional research. The journal seeks to disseminate work that challenges conventional theories and contributes to establishing new paradigms in the etio-pathogenesis, diagnosis, treatment, or prevention of cancers. Emphasis is placed on research shedding light on processes driving metastatic spread and providing crucial insights into cancer biology beyond existing knowledge.
Areas covered include the cellular and molecular biology of cancer, resistance to cancer therapies, and the development of improved approaches to enhance survival. Oncogene spans the spectrum of cancer biology, from fundamental and theoretical work to translational, applied, and clinical research, including early and late Phase clinical trials, particularly those with biologic and translational endpoints.