D-MGDCN-CLSTM: A Traffic Prediction Model Based on Multi-Graph Gated Convolution and Convolutional Long-Short-Term Memory.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL Sensors Pub Date : 2025-01-19 DOI:10.3390/s25020561
Linliang Zhang, Shuyun Xu, Shuo Li, Lihu Pan, Su Gong
{"title":"D-MGDCN-CLSTM: A Traffic Prediction Model Based on Multi-Graph Gated Convolution and Convolutional Long-Short-Term Memory.","authors":"Linliang Zhang, Shuyun Xu, Shuo Li, Lihu Pan, Su Gong","doi":"10.3390/s25020561","DOIUrl":null,"url":null,"abstract":"<p><p>Real-time and accurate traffic forecasting aids in traffic planning and design and helps to alleviate congestion. Addressing the negative impacts of partial data loss in traffic forecasting, and the challenge of simultaneously capturing short-term fluctuations and long-term trends, this paper presents a traffic forecasting model, D-MGDCN-CLSTM, based on Multi-Graph Gated Dilated Convolution and Conv-LSTM. The model uses the DTWN algorithm to fill in missing data. To better capture the dual characteristics of short-term fluctuations and long-term trends in traffic, the model employs the DWT for multi-scale decomposition to obtain approximation and detail coefficients. The Conv-LSTM processes the approximation coefficients to capture the long-term characteristics of the time series, while the multiple layers of the MGDCN process the detail coefficients to capture short-term fluctuations. The outputs of the two branches are then merged to produce the forecast results. The model is tested against 10 algorithms using the PeMSD7(M) and PeMSD7(L) datasets, improving MAE, RMSE, and ACC by an average of 1.38% and 13.89%, 1% and 1.24%, and 5.92% and 1%, respectively. Ablation experiments, parameter impact analysis, and visual analysis all demonstrate the superiority of our decompositional approach in handling the dual characteristics of traffic data.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11769014/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25020561","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Real-time and accurate traffic forecasting aids in traffic planning and design and helps to alleviate congestion. Addressing the negative impacts of partial data loss in traffic forecasting, and the challenge of simultaneously capturing short-term fluctuations and long-term trends, this paper presents a traffic forecasting model, D-MGDCN-CLSTM, based on Multi-Graph Gated Dilated Convolution and Conv-LSTM. The model uses the DTWN algorithm to fill in missing data. To better capture the dual characteristics of short-term fluctuations and long-term trends in traffic, the model employs the DWT for multi-scale decomposition to obtain approximation and detail coefficients. The Conv-LSTM processes the approximation coefficients to capture the long-term characteristics of the time series, while the multiple layers of the MGDCN process the detail coefficients to capture short-term fluctuations. The outputs of the two branches are then merged to produce the forecast results. The model is tested against 10 algorithms using the PeMSD7(M) and PeMSD7(L) datasets, improving MAE, RMSE, and ACC by an average of 1.38% and 13.89%, 1% and 1.24%, and 5.92% and 1%, respectively. Ablation experiments, parameter impact analysis, and visual analysis all demonstrate the superiority of our decompositional approach in handling the dual characteristics of traffic data.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Physical Activity in Pre-Ambulatory Children with Cerebral Palsy: An Exploratory Validation Study to Distinguish Active vs. Sedentary Time Using Wearable Sensors. A Critical Analysis of Cooperative Caching in Ad Hoc Wireless Communication Technologies: Current Challenges and Future Directions. Hydrogenated Amorphous Silicon Charge-Selective Contact Devices on a Polyimide Flexible Substrate for Dosimetry and Beam Flux Measurements. Predicting Perennial Ryegrass Cultivars and the Presence of an Epichloë Endophyte in Seeds Using Near-Infrared Spectroscopy (NIRS). A Multi-Task Causal Knowledge Fault Diagnosis Method for PMSM-ITSF Based on Meta-Learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1