Characterization of RAP Signal Patterns, Temporal Relationships, and Artifact Profiles Derived from Intracranial Pressure Sensors in Acute Traumatic Neural Injury.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL Sensors Pub Date : 2025-01-20 DOI:10.3390/s25020586
Abrar Islam, Amanjyot Singh Sainbhi, Kevin Y Stein, Nuray Vakitbilir, Alwyn Gomez, Noah Silvaggio, Tobias Bergmann, Mansoor Hayat, Logan Froese, Frederick A Zeiler
{"title":"Characterization of RAP Signal Patterns, Temporal Relationships, and Artifact Profiles Derived from Intracranial Pressure Sensors in Acute Traumatic Neural Injury.","authors":"Abrar Islam, Amanjyot Singh Sainbhi, Kevin Y Stein, Nuray Vakitbilir, Alwyn Gomez, Noah Silvaggio, Tobias Bergmann, Mansoor Hayat, Logan Froese, Frederick A Zeiler","doi":"10.3390/s25020586","DOIUrl":null,"url":null,"abstract":"<p><strong>Goal: </strong>Current methodologies for assessing cerebral compliance using pressure sensor technologies are prone to errors and issues with inter- and intra-observer consistency. RAP, a metric for measuring intracranial compensatory reserve (and therefore compliance), holds promise. It is derived using the moving correlation between intracranial pressure (ICP) and the pulse amplitude of ICP (AMP). RAP remains largely unexplored in cases of moderate to severe acute traumatic neural injury (also known as traumatic brain injury (TBI)). The goal of this work is to explore the general description of (a) RAP signal patterns and behaviors derived from ICP pressure transducers, (b) temporal statistical relationships, and (c) the characterization of the artifact profile.</p><p><strong>Methods: </strong>Different summary and statistical measurements were used to describe RAP's pattern and behaviors, along with performing sub-group analyses. The autoregressive integrated moving average (ARIMA) model was employed to outline the time-series structure of RAP across different temporal resolutions using the autoregressive (<i>p</i>-order) and moving average orders (<i>q</i>-order). After leveraging the time-series structure of RAP, similar methods were applied to ICP and AMP for comparison with RAP. Finally, key features were identified to distinguish artifacts in RAP. This might involve leveraging ICP/AMP signals and statistical structures.</p><p><strong>Results: </strong>The mean and time spent within the RAP threshold ranges ([0.4, 1], (0, 0.4), and [-1, 0]) indicate that RAP exhibited high positive values, suggesting an impaired compensatory reserve in TBI patients. The median optimal ARIMA model for each resolution and each signal was determined. Autocorrelative function (ACF) and partial ACF (PACF) plots of residuals verified the adequacy of these median optimal ARIMA models. The median of residuals indicates that ARIMA performed better with the higher-resolution data. To identify artifacts, (a) ICP <i>q</i>-order, AMP <i>p</i>-order, and RAP <i>p</i>-order and <i>q</i>-order, (b) residuals of ICP, AMP, and RAP, and (c) cross-correlation between residuals of RAP and AMP proved to be useful at the minute-by-minute resolution, whereas, for the 10-min-by-10-min data resolution, only the <i>q</i>-order of the optimal ARIMA model of ICP and AMP served as a distinguishing factor.</p><p><strong>Conclusions: </strong>RAP signals derived from ICP pressure sensor technology displayed reproducible behaviors across this population of TBI patients. ARIMA modeling at the higher resolution provided comparatively strong accuracy, and key features were identified leveraging these models that could identify RAP artifacts. Further research is needed to enhance artifact management and broaden applicability across varied datasets.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11769573/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25020586","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Goal: Current methodologies for assessing cerebral compliance using pressure sensor technologies are prone to errors and issues with inter- and intra-observer consistency. RAP, a metric for measuring intracranial compensatory reserve (and therefore compliance), holds promise. It is derived using the moving correlation between intracranial pressure (ICP) and the pulse amplitude of ICP (AMP). RAP remains largely unexplored in cases of moderate to severe acute traumatic neural injury (also known as traumatic brain injury (TBI)). The goal of this work is to explore the general description of (a) RAP signal patterns and behaviors derived from ICP pressure transducers, (b) temporal statistical relationships, and (c) the characterization of the artifact profile.

Methods: Different summary and statistical measurements were used to describe RAP's pattern and behaviors, along with performing sub-group analyses. The autoregressive integrated moving average (ARIMA) model was employed to outline the time-series structure of RAP across different temporal resolutions using the autoregressive (p-order) and moving average orders (q-order). After leveraging the time-series structure of RAP, similar methods were applied to ICP and AMP for comparison with RAP. Finally, key features were identified to distinguish artifacts in RAP. This might involve leveraging ICP/AMP signals and statistical structures.

Results: The mean and time spent within the RAP threshold ranges ([0.4, 1], (0, 0.4), and [-1, 0]) indicate that RAP exhibited high positive values, suggesting an impaired compensatory reserve in TBI patients. The median optimal ARIMA model for each resolution and each signal was determined. Autocorrelative function (ACF) and partial ACF (PACF) plots of residuals verified the adequacy of these median optimal ARIMA models. The median of residuals indicates that ARIMA performed better with the higher-resolution data. To identify artifacts, (a) ICP q-order, AMP p-order, and RAP p-order and q-order, (b) residuals of ICP, AMP, and RAP, and (c) cross-correlation between residuals of RAP and AMP proved to be useful at the minute-by-minute resolution, whereas, for the 10-min-by-10-min data resolution, only the q-order of the optimal ARIMA model of ICP and AMP served as a distinguishing factor.

Conclusions: RAP signals derived from ICP pressure sensor technology displayed reproducible behaviors across this population of TBI patients. ARIMA modeling at the higher resolution provided comparatively strong accuracy, and key features were identified leveraging these models that could identify RAP artifacts. Further research is needed to enhance artifact management and broaden applicability across varied datasets.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Diagnosis of Reverse-Connection Defects in High-Voltage Cable Cross-Bonded Grounding System Based on ARO-SVM. Identifying the Primary Kinetic Factors Influencing the Anterior-Posterior Center of Mass Displacement in Barbell Squats: A Factor Regression Analysis. A Feature-Enhanced Small Object Detection Algorithm Based on Attention Mechanism. A Piecewise Linearization Based Method for Crossed Frequency Admittance Matrix Model Calculation of Harmonic Sources. A Precise Oxide Film Thickness Measurement Method Based on Swept Frequency and Transmission Cable Impedance Correction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1