Ran Xu, Yanguo Fan, Bowen Fan, Guangyue Feng, Ruotong Li
{"title":"Classification and Monitoring of Salt Marsh Vegetation in the Yellow River Delta Based on Multi-Source Remote Sensing Data Fusion.","authors":"Ran Xu, Yanguo Fan, Bowen Fan, Guangyue Feng, Ruotong Li","doi":"10.3390/s25020529","DOIUrl":null,"url":null,"abstract":"<p><p>Salt marsh vegetation in the Yellow River Delta, including <i>Phragmites australis</i> (<i>P. australis</i>), <i>Suaeda salsa</i> (<i>S. salsa</i>), and <i>Tamarix chinensis</i> (<i>T. chinensis</i>), is essential for the stability of wetland ecosystems. In recent years, salt marsh vegetation has experienced severe degradation, which is primarily due to invasive species and human activities. Therefore, the accurate monitoring of the spatial distribution of these vegetation types is critical for the ecological protection and restoration of the Yellow River Delta. This study proposes a multi-source remote sensing data fusion method based on Sentinel-1 and Sentinel-2 imagery, integrating the temporal characteristics of optical and SAR (synthetic aperture radar) data for the classification mapping of salt marsh vegetation in the Yellow River Delta. Phenological and polarization features were extracted to capture vegetation characteristics. A random forest algorithm was then applied to evaluate the impact of different feature combinations on classification accuracy. Combining optical and SAR time-series data significantly enhanced classification accuracy, particularly in differentiating <i>P. australis</i>, <i>S. salsa</i>, and <i>T. chinensis</i>. The integration of phenological features, polarization ratio, and polarization difference achieved a classification accuracy of 93.51% with a Kappa coefficient of 0.917, outperforming the use of individual data sources.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11769012/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25020529","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Salt marsh vegetation in the Yellow River Delta, including Phragmites australis (P. australis), Suaeda salsa (S. salsa), and Tamarix chinensis (T. chinensis), is essential for the stability of wetland ecosystems. In recent years, salt marsh vegetation has experienced severe degradation, which is primarily due to invasive species and human activities. Therefore, the accurate monitoring of the spatial distribution of these vegetation types is critical for the ecological protection and restoration of the Yellow River Delta. This study proposes a multi-source remote sensing data fusion method based on Sentinel-1 and Sentinel-2 imagery, integrating the temporal characteristics of optical and SAR (synthetic aperture radar) data for the classification mapping of salt marsh vegetation in the Yellow River Delta. Phenological and polarization features were extracted to capture vegetation characteristics. A random forest algorithm was then applied to evaluate the impact of different feature combinations on classification accuracy. Combining optical and SAR time-series data significantly enhanced classification accuracy, particularly in differentiating P. australis, S. salsa, and T. chinensis. The integration of phenological features, polarization ratio, and polarization difference achieved a classification accuracy of 93.51% with a Kappa coefficient of 0.917, outperforming the use of individual data sources.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.