Classification and Monitoring of Salt Marsh Vegetation in the Yellow River Delta Based on Multi-Source Remote Sensing Data Fusion.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL Sensors Pub Date : 2025-01-17 DOI:10.3390/s25020529
Ran Xu, Yanguo Fan, Bowen Fan, Guangyue Feng, Ruotong Li
{"title":"Classification and Monitoring of Salt Marsh Vegetation in the Yellow River Delta Based on Multi-Source Remote Sensing Data Fusion.","authors":"Ran Xu, Yanguo Fan, Bowen Fan, Guangyue Feng, Ruotong Li","doi":"10.3390/s25020529","DOIUrl":null,"url":null,"abstract":"<p><p>Salt marsh vegetation in the Yellow River Delta, including <i>Phragmites australis</i> (<i>P. australis</i>), <i>Suaeda salsa</i> (<i>S. salsa</i>), and <i>Tamarix chinensis</i> (<i>T. chinensis</i>), is essential for the stability of wetland ecosystems. In recent years, salt marsh vegetation has experienced severe degradation, which is primarily due to invasive species and human activities. Therefore, the accurate monitoring of the spatial distribution of these vegetation types is critical for the ecological protection and restoration of the Yellow River Delta. This study proposes a multi-source remote sensing data fusion method based on Sentinel-1 and Sentinel-2 imagery, integrating the temporal characteristics of optical and SAR (synthetic aperture radar) data for the classification mapping of salt marsh vegetation in the Yellow River Delta. Phenological and polarization features were extracted to capture vegetation characteristics. A random forest algorithm was then applied to evaluate the impact of different feature combinations on classification accuracy. Combining optical and SAR time-series data significantly enhanced classification accuracy, particularly in differentiating <i>P. australis</i>, <i>S. salsa</i>, and <i>T. chinensis</i>. The integration of phenological features, polarization ratio, and polarization difference achieved a classification accuracy of 93.51% with a Kappa coefficient of 0.917, outperforming the use of individual data sources.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11769012/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25020529","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Salt marsh vegetation in the Yellow River Delta, including Phragmites australis (P. australis), Suaeda salsa (S. salsa), and Tamarix chinensis (T. chinensis), is essential for the stability of wetland ecosystems. In recent years, salt marsh vegetation has experienced severe degradation, which is primarily due to invasive species and human activities. Therefore, the accurate monitoring of the spatial distribution of these vegetation types is critical for the ecological protection and restoration of the Yellow River Delta. This study proposes a multi-source remote sensing data fusion method based on Sentinel-1 and Sentinel-2 imagery, integrating the temporal characteristics of optical and SAR (synthetic aperture radar) data for the classification mapping of salt marsh vegetation in the Yellow River Delta. Phenological and polarization features were extracted to capture vegetation characteristics. A random forest algorithm was then applied to evaluate the impact of different feature combinations on classification accuracy. Combining optical and SAR time-series data significantly enhanced classification accuracy, particularly in differentiating P. australis, S. salsa, and T. chinensis. The integration of phenological features, polarization ratio, and polarization difference achieved a classification accuracy of 93.51% with a Kappa coefficient of 0.917, outperforming the use of individual data sources.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Diagnosis of Reverse-Connection Defects in High-Voltage Cable Cross-Bonded Grounding System Based on ARO-SVM. Identifying the Primary Kinetic Factors Influencing the Anterior-Posterior Center of Mass Displacement in Barbell Squats: A Factor Regression Analysis. A Feature-Enhanced Small Object Detection Algorithm Based on Attention Mechanism. A Piecewise Linearization Based Method for Crossed Frequency Admittance Matrix Model Calculation of Harmonic Sources. A Precise Oxide Film Thickness Measurement Method Based on Swept Frequency and Transmission Cable Impedance Correction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1