{"title":"The Application of Supervised Machine Learning Algorithms for Image Alignment in Multi-Channel Imaging Systems.","authors":"Kyrylo Romanenko, Yevgen Oberemok, Ivan Syniavskyi, Natalia Bezugla, Pawel Komada, Mykhailo Bezuglyi","doi":"10.3390/s25020544","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents a method for aligning the geometric parameters of images in multi-channel imaging systems based on the application of pre-processing methods, machine learning algorithms, and a calibration setup using an array of orderly markers at the nodes of an imaginary grid. According to the proposed method, one channel of the system is used as a reference. The images from the calibration setup in each channel determine the coordinates of the markers, and the displacements of the marker centers in the system's channels relative to the coordinates of the centers in the reference channel are then determined. Correction models are obtained as multiple polynomial regression models based on these displacements. These correction models align the geometric parameters of the images in the system channels before they are used in the calculations. The models are derived once, allowing for geometric calibration of the imaging system. The developed method is applied to align the images in the channels of a module of a multispectral imaging polarimeter. As a result, the standard image alignment error in the polarimeter channels is reduced from 4.8 to 0.5 pixels.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768783/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25020544","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a method for aligning the geometric parameters of images in multi-channel imaging systems based on the application of pre-processing methods, machine learning algorithms, and a calibration setup using an array of orderly markers at the nodes of an imaginary grid. According to the proposed method, one channel of the system is used as a reference. The images from the calibration setup in each channel determine the coordinates of the markers, and the displacements of the marker centers in the system's channels relative to the coordinates of the centers in the reference channel are then determined. Correction models are obtained as multiple polynomial regression models based on these displacements. These correction models align the geometric parameters of the images in the system channels before they are used in the calculations. The models are derived once, allowing for geometric calibration of the imaging system. The developed method is applied to align the images in the channels of a module of a multispectral imaging polarimeter. As a result, the standard image alignment error in the polarimeter channels is reduced from 4.8 to 0.5 pixels.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.