The Effect of Electrical Stimulation Strength Training on Lower Limb Muscle Activation Characteristics During the Jump Smash Performance in Badminton Based on the EMS and EMG Sensors.
{"title":"The Effect of Electrical Stimulation Strength Training on Lower Limb Muscle Activation Characteristics During the Jump Smash Performance in Badminton Based on the EMS and EMG Sensors.","authors":"Xinyu Lin, Yimin Hu, Yi Sheng","doi":"10.3390/s25020577","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the effects of electrical stimulation (EMS) combined with strength training on lower limb muscle activation and badminton jump performance, specifically during the \"jump smash\" movement. A total of 25 male badminton players, with a minimum of three years of professional training experience and no history of lower limb injuries, participated in the study. Participants underwent three distinct conditions: baseline testing, strength training, and EMS combined with strength training. Each participant performed specific jump tests, including the jump smash and static squat jump, under each condition. Muscle activation was measured using electromyography (EMG) sensors to assess changes in the activation of key lower limb muscles. The EMS intervention involved targeted electrical pulses designed to stimulate both superficial and deep muscle fibers, aiming to enhance explosive strength and coordination in the lower limbs. The results revealed that the EMS + strength condition significantly improved performance in both the jump smash and static squat jump, as compared to the baseline and strength-only conditions (<i>F</i> = 3.39, <i>p</i> = 0.042; <i>F</i> = 3.67, <i>p</i> = 0.033, respectively). Additionally, increased activation of the rectus femoris (RF) was observed in the EMS + strength condition, indicating improved muscle recruitment and synchronization, likely due to the activation of fast-twitch fibers. No significant differences were found in the eccentric-concentric squat jump (<i>F</i> = 0.59, <i>p</i> = 0.561). The findings suggest that EMS, when combined with strength training, is an effective method for enhancing lower limb explosiveness and muscle activation in badminton players, offering a promising training approach for improving performance in high-intensity, explosive movements.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768960/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25020577","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the effects of electrical stimulation (EMS) combined with strength training on lower limb muscle activation and badminton jump performance, specifically during the "jump smash" movement. A total of 25 male badminton players, with a minimum of three years of professional training experience and no history of lower limb injuries, participated in the study. Participants underwent three distinct conditions: baseline testing, strength training, and EMS combined with strength training. Each participant performed specific jump tests, including the jump smash and static squat jump, under each condition. Muscle activation was measured using electromyography (EMG) sensors to assess changes in the activation of key lower limb muscles. The EMS intervention involved targeted electrical pulses designed to stimulate both superficial and deep muscle fibers, aiming to enhance explosive strength and coordination in the lower limbs. The results revealed that the EMS + strength condition significantly improved performance in both the jump smash and static squat jump, as compared to the baseline and strength-only conditions (F = 3.39, p = 0.042; F = 3.67, p = 0.033, respectively). Additionally, increased activation of the rectus femoris (RF) was observed in the EMS + strength condition, indicating improved muscle recruitment and synchronization, likely due to the activation of fast-twitch fibers. No significant differences were found in the eccentric-concentric squat jump (F = 0.59, p = 0.561). The findings suggest that EMS, when combined with strength training, is an effective method for enhancing lower limb explosiveness and muscle activation in badminton players, offering a promising training approach for improving performance in high-intensity, explosive movements.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.