Integrating Remote Sensing and Soil Features for Enhanced Machine Learning-Based Corn Yield Prediction in the Southern US.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL Sensors Pub Date : 2025-01-18 DOI:10.3390/s25020543
Sayantan Sarkar, Javier M Osorio Leyton, Efrain Noa-Yarasca, Kabindra Adhikari, Chad B Hajda, Douglas R Smith
{"title":"Integrating Remote Sensing and Soil Features for Enhanced Machine Learning-Based Corn Yield Prediction in the Southern US.","authors":"Sayantan Sarkar, Javier M Osorio Leyton, Efrain Noa-Yarasca, Kabindra Adhikari, Chad B Hajda, Douglas R Smith","doi":"10.3390/s25020543","DOIUrl":null,"url":null,"abstract":"<p><p>Efficient and reliable corn (<i>Zea mays</i> L.) yield prediction is important for varietal selection by plant breeders and management decision-making by growers. Unlike prior studies that focus mainly on county-level or controlled laboratory-scale areas, this study targets a production-scale area, better representing real-world agricultural conditions and offering more practical relevance for farmers. Therefore, the objective of our study was to determine the best combination of vegetation indices and abiotic factors for predicting corn yield in a rain-fed, production-scale area, identify the most suitable corn growth stage for yield estimation using machine learning, and identify the most effective machine learning model for corn yield estimation. Our study used high-resolution (6 cm) aerial multispectral imagery. Sixty-two different predictors, including soil properties (sand, silt, and clay percentages), slope, spectral bands (red, green, blue, red-edge, NIR), vegetation indices (GNDRE, NDRE, TGI), color-space indices, and wavelengths were derived from the multispectral data collected at the seven (V4, V5, V6, V7, V9, V12, and V14/VT) growth stages of corn. Four regression and machine learning algorithms were evaluated for yield prediction: linear regression, random forest, extreme gradient boosting, and gradient boosting regressor. A total of 6865 yield values were used for model training and 1716 for validation. Results show that, using random forest method, the V14/VT stage had the best yield predictions (RMSE of 0.52 Mg/ha for a mean yield of 10.19 Mg/ha), and yield estimation at V6 stage was still feasible. We concluded that integrating abiotic factors, such as slope and soil properties, significantly improved model accuracy. Among vegetation indices, TGI, HUE, and GNDRE performed better. Results from this study can help farmers or crop consultants plan ahead for future logistics through enhanced early-season yield predictions and support farm profitability and sustainability.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11769266/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25020543","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient and reliable corn (Zea mays L.) yield prediction is important for varietal selection by plant breeders and management decision-making by growers. Unlike prior studies that focus mainly on county-level or controlled laboratory-scale areas, this study targets a production-scale area, better representing real-world agricultural conditions and offering more practical relevance for farmers. Therefore, the objective of our study was to determine the best combination of vegetation indices and abiotic factors for predicting corn yield in a rain-fed, production-scale area, identify the most suitable corn growth stage for yield estimation using machine learning, and identify the most effective machine learning model for corn yield estimation. Our study used high-resolution (6 cm) aerial multispectral imagery. Sixty-two different predictors, including soil properties (sand, silt, and clay percentages), slope, spectral bands (red, green, blue, red-edge, NIR), vegetation indices (GNDRE, NDRE, TGI), color-space indices, and wavelengths were derived from the multispectral data collected at the seven (V4, V5, V6, V7, V9, V12, and V14/VT) growth stages of corn. Four regression and machine learning algorithms were evaluated for yield prediction: linear regression, random forest, extreme gradient boosting, and gradient boosting regressor. A total of 6865 yield values were used for model training and 1716 for validation. Results show that, using random forest method, the V14/VT stage had the best yield predictions (RMSE of 0.52 Mg/ha for a mean yield of 10.19 Mg/ha), and yield estimation at V6 stage was still feasible. We concluded that integrating abiotic factors, such as slope and soil properties, significantly improved model accuracy. Among vegetation indices, TGI, HUE, and GNDRE performed better. Results from this study can help farmers or crop consultants plan ahead for future logistics through enhanced early-season yield predictions and support farm profitability and sustainability.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Diagnosis of Reverse-Connection Defects in High-Voltage Cable Cross-Bonded Grounding System Based on ARO-SVM. Identifying the Primary Kinetic Factors Influencing the Anterior-Posterior Center of Mass Displacement in Barbell Squats: A Factor Regression Analysis. A Feature-Enhanced Small Object Detection Algorithm Based on Attention Mechanism. A Piecewise Linearization Based Method for Crossed Frequency Admittance Matrix Model Calculation of Harmonic Sources. A Precise Oxide Film Thickness Measurement Method Based on Swept Frequency and Transmission Cable Impedance Correction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1