{"title":"Time-Series Image-Based Automated Monitoring Framework for Visible Facilities: Focusing on Installation and Retention Period.","authors":"Seonjun Yoon, Hyunsoo Kim","doi":"10.3390/s25020574","DOIUrl":null,"url":null,"abstract":"<p><p>In the construction industry, ensuring the proper installation, retention, and dismantling of temporary structures, such as jack supports, is critical to maintaining safety and project timelines. However, inconsistencies between on-site data and construction documentation remain a significant challenge. To address this, this study proposes an integrated monitoring framework that combines computer vision-based object detection and document recognition techniques. The system utilizes YOLOv5 for detecting jack supports in both construction drawings and on-site images captured through wearable cameras, while optical character recognition (OCR) and natural language processing (NLP) extract installation and dismantling timelines from work orders. The proposed framework enables continuous monitoring and ensures compliance with retention periods by aligning on-site data with documented requirements. The analysis includes 23 jack supports monitored daily over 28 days under varying environmental conditions, including lighting changes and structural configurations. The results demonstrate that the system achieves an average detection accuracy of 94.1%, effectively identifying discrepancies and reducing misclassifications caused by structural similarities and environmental variations. To further enhance detection reliability, methods such as color differentiation, construction plan overlays, and vertical segmentation were implemented, significantly improving performance. This study validates the effectiveness of integrating visual and textual data sources in dynamic construction environments. The study supports the development of automated monitoring systems by improving accuracy and safety measures while reducing manual intervention, offering practical insights for future construction site management.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768998/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25020574","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In the construction industry, ensuring the proper installation, retention, and dismantling of temporary structures, such as jack supports, is critical to maintaining safety and project timelines. However, inconsistencies between on-site data and construction documentation remain a significant challenge. To address this, this study proposes an integrated monitoring framework that combines computer vision-based object detection and document recognition techniques. The system utilizes YOLOv5 for detecting jack supports in both construction drawings and on-site images captured through wearable cameras, while optical character recognition (OCR) and natural language processing (NLP) extract installation and dismantling timelines from work orders. The proposed framework enables continuous monitoring and ensures compliance with retention periods by aligning on-site data with documented requirements. The analysis includes 23 jack supports monitored daily over 28 days under varying environmental conditions, including lighting changes and structural configurations. The results demonstrate that the system achieves an average detection accuracy of 94.1%, effectively identifying discrepancies and reducing misclassifications caused by structural similarities and environmental variations. To further enhance detection reliability, methods such as color differentiation, construction plan overlays, and vertical segmentation were implemented, significantly improving performance. This study validates the effectiveness of integrating visual and textual data sources in dynamic construction environments. The study supports the development of automated monitoring systems by improving accuracy and safety measures while reducing manual intervention, offering practical insights for future construction site management.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.