{"title":"Time Series Data Augmentation for Energy Consumption Data Based on Improved TimeGAN.","authors":"Peihao Tang, Zhen Li, Xuanlin Wang, Xueping Liu, Peng Mou","doi":"10.3390/s25020493","DOIUrl":null,"url":null,"abstract":"<p><p>Predicting the time series energy consumption data of manufacturing processes can optimize energy management efficiency and reduce maintenance costs for enterprises. Using deep learning algorithms to establish prediction models for sensor data is an effective approach; however, the performance of these models is significantly influenced by the quantity and quality of the training data. In real production environments, the amount of time series data that can be collected during the manufacturing process is limited, which can lead to a decline in model performance. In this paper, we use an improved TimeGAN model for the augmentation of energy consumption data, which incorporates a multi-head self-attention mechanism layer into the recovery model to enhance prediction accuracy. A hybrid CNN-GRU model is used to predict the energy consumption data from the operational processes of manufacturing equipment. After data augmentation, the prediction model exhibits significant reductions in RMSE and MAE along with an increase in the R<sup>2</sup> value. The prediction accuracy of the model is maximized when the amount of generated synthetic data is approximately twice that of the original data.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11769051/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25020493","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Predicting the time series energy consumption data of manufacturing processes can optimize energy management efficiency and reduce maintenance costs for enterprises. Using deep learning algorithms to establish prediction models for sensor data is an effective approach; however, the performance of these models is significantly influenced by the quantity and quality of the training data. In real production environments, the amount of time series data that can be collected during the manufacturing process is limited, which can lead to a decline in model performance. In this paper, we use an improved TimeGAN model for the augmentation of energy consumption data, which incorporates a multi-head self-attention mechanism layer into the recovery model to enhance prediction accuracy. A hybrid CNN-GRU model is used to predict the energy consumption data from the operational processes of manufacturing equipment. After data augmentation, the prediction model exhibits significant reductions in RMSE and MAE along with an increase in the R2 value. The prediction accuracy of the model is maximized when the amount of generated synthetic data is approximately twice that of the original data.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.