{"title":"Spectrum Sensing in Very Low SNR Environment Using Multi-Scale Temporal Correlation Perception with Residual Attention.","authors":"Song Hong, Weiqiang Xu","doi":"10.3390/s25020528","DOIUrl":null,"url":null,"abstract":"<p><p>Spectrum sensing is recognized as a viable strategy to alleviate the scarcity of spectrum resources and to optimize their usage. In this paper, considering the time-varying characteristics and the dependence on various timescales within a time series of samples composed of in-phase (I) and quadrature (Q) component signals, we propose a multi-scale time-correlated perceptual attention model named MSTC-PANet. The model consists of multiple parallel temporal correlation perceptual attention (TCPA) modules, enabling us to extract features at different timescales and identify dependencies among features across various timescales. Our simulations show that MSTC-PANet significantly improves the detection of channel occupancy at low signal-to-noise ratios (SNR), particularly in untrained scenarios with lower SNR conditions and modulation uncertainties. The analysis of the ROC curve indicates that at an SNR of -20 dB, the proposed MSTC-PANet achieves a detection rate of 98% with a false alarm rate of 10%. Furthermore, MSTC-PANet, which has been trained using digital modulation techniques, also demonstrates applicability to analog modulation.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11769494/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25020528","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Spectrum sensing is recognized as a viable strategy to alleviate the scarcity of spectrum resources and to optimize their usage. In this paper, considering the time-varying characteristics and the dependence on various timescales within a time series of samples composed of in-phase (I) and quadrature (Q) component signals, we propose a multi-scale time-correlated perceptual attention model named MSTC-PANet. The model consists of multiple parallel temporal correlation perceptual attention (TCPA) modules, enabling us to extract features at different timescales and identify dependencies among features across various timescales. Our simulations show that MSTC-PANet significantly improves the detection of channel occupancy at low signal-to-noise ratios (SNR), particularly in untrained scenarios with lower SNR conditions and modulation uncertainties. The analysis of the ROC curve indicates that at an SNR of -20 dB, the proposed MSTC-PANet achieves a detection rate of 98% with a false alarm rate of 10%. Furthermore, MSTC-PANet, which has been trained using digital modulation techniques, also demonstrates applicability to analog modulation.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.