SQM Ageing and Atmospheric Conditions: How Do They Affect the Long-Term Trend of Night Sky Brightness Measurements?

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL Sensors Pub Date : 2025-01-17 DOI:10.3390/s25020516
Pietro Fiorentin, Stefano Cavazzani, Andrea Bertolo, Sergio Ortolani, Renata Binotto, Ivo Saviane
{"title":"SQM Ageing and Atmospheric Conditions: How Do They Affect the Long-Term Trend of Night Sky Brightness Measurements?","authors":"Pietro Fiorentin, Stefano Cavazzani, Andrea Bertolo, Sergio Ortolani, Renata Binotto, Ivo Saviane","doi":"10.3390/s25020516","DOIUrl":null,"url":null,"abstract":"<p><p>The most widely used radiance sensor for monitoring Night Sky Brightness (NSB) is the Sky Quality Meter (SQM), making its measurement stability fundamental. A method using the Sun as a calibrator was applied to analyse the quality of the measures recorded in the Veneto Region (Italy) and at La Silla (Chile). The analysis mainly revealed a tendency toward reductions in measured NSB due to both instrument ageing and atmospheric variations. This work compared the component due to instrumental ageing with the contribution of atmospheric conditions. The spectral responsivity of two SQMs working outdoors were analysed in a laboratory after several years of operation, revealing a significant decay, but not enough to justify the measured long-term trends. The contribution of atmospheric variations was studied through the analysis of solar irradiance at the ground, considering it as an indicator of air transparency, and values of the aerosol optical depth obtained from satellite measurements. The long-term trends measured by weather stations at different altitudes and conditions indicated an increase in solar irradiance in the Italian study sites. The comparison among the daily irradiance increase, the reduction in the aerosol optical depth, and the NSB measurements highlighted a darker sky for sites contaminated by light pollution (LP) and a brighter sky for sites not affected by LP, showing a significant and predominant role of atmospheric conditions in relation to NSB change. In the most significant case, the fraction of the variation in NSB explained by AOD changes exceeded 75%.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768471/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25020516","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The most widely used radiance sensor for monitoring Night Sky Brightness (NSB) is the Sky Quality Meter (SQM), making its measurement stability fundamental. A method using the Sun as a calibrator was applied to analyse the quality of the measures recorded in the Veneto Region (Italy) and at La Silla (Chile). The analysis mainly revealed a tendency toward reductions in measured NSB due to both instrument ageing and atmospheric variations. This work compared the component due to instrumental ageing with the contribution of atmospheric conditions. The spectral responsivity of two SQMs working outdoors were analysed in a laboratory after several years of operation, revealing a significant decay, but not enough to justify the measured long-term trends. The contribution of atmospheric variations was studied through the analysis of solar irradiance at the ground, considering it as an indicator of air transparency, and values of the aerosol optical depth obtained from satellite measurements. The long-term trends measured by weather stations at different altitudes and conditions indicated an increase in solar irradiance in the Italian study sites. The comparison among the daily irradiance increase, the reduction in the aerosol optical depth, and the NSB measurements highlighted a darker sky for sites contaminated by light pollution (LP) and a brighter sky for sites not affected by LP, showing a significant and predominant role of atmospheric conditions in relation to NSB change. In the most significant case, the fraction of the variation in NSB explained by AOD changes exceeded 75%.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Diagnosis of Reverse-Connection Defects in High-Voltage Cable Cross-Bonded Grounding System Based on ARO-SVM. Identifying the Primary Kinetic Factors Influencing the Anterior-Posterior Center of Mass Displacement in Barbell Squats: A Factor Regression Analysis. A Feature-Enhanced Small Object Detection Algorithm Based on Attention Mechanism. A Piecewise Linearization Based Method for Crossed Frequency Admittance Matrix Model Calculation of Harmonic Sources. A Precise Oxide Film Thickness Measurement Method Based on Swept Frequency and Transmission Cable Impedance Correction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1