{"title":"Ground-Target Recognition Method Based on Transfer Learning.","authors":"Qiuzhan Zhou, Jikang Hu, Huinan Wu, Cong Wang, Pingping Liu, Xinyi Yao","doi":"10.3390/s25020576","DOIUrl":null,"url":null,"abstract":"<p><p>A moving ground-target recognition system can monitor suspicious activities of pedestrians and vehicles in key areas. Currently, most target recognition systems are based on devices such as fiber optics, radar, and vibration sensors. A system based on vibration sensors has the advantages of small size, low power consumption, strong concealment, easy installation, and low power consumption. However, existing recognition algorithms generally suffer from problems such as the inability to recognize long-distance moving targets and adapt to new environments, as well as low recognition accuracy. Here, we demonstrate that applying transfer learning to recognition algorithms can adapt to new environments and improve accuracy. We proposed a new moving ground-target recognition algorithm based on CNN and domain adaptation. We used convolutional neural networks (CNNS) to extract depth features from target vibration signals to identify target types. We used transfer learning to make the algorithm more adaptable to environmental changes. Our results show that the proposed moving ground-target recognition algorithm can identify target types, improve accuracy, and adapt to a new environment with good performance. We anticipate that our algorithm will be the starting point for more complex recognition algorithms. For example, target recognition algorithms based on multi-modal fusion and transfer learning can better meet actual needs.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768715/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25020576","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A moving ground-target recognition system can monitor suspicious activities of pedestrians and vehicles in key areas. Currently, most target recognition systems are based on devices such as fiber optics, radar, and vibration sensors. A system based on vibration sensors has the advantages of small size, low power consumption, strong concealment, easy installation, and low power consumption. However, existing recognition algorithms generally suffer from problems such as the inability to recognize long-distance moving targets and adapt to new environments, as well as low recognition accuracy. Here, we demonstrate that applying transfer learning to recognition algorithms can adapt to new environments and improve accuracy. We proposed a new moving ground-target recognition algorithm based on CNN and domain adaptation. We used convolutional neural networks (CNNS) to extract depth features from target vibration signals to identify target types. We used transfer learning to make the algorithm more adaptable to environmental changes. Our results show that the proposed moving ground-target recognition algorithm can identify target types, improve accuracy, and adapt to a new environment with good performance. We anticipate that our algorithm will be the starting point for more complex recognition algorithms. For example, target recognition algorithms based on multi-modal fusion and transfer learning can better meet actual needs.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.