Raghda Al-Halawani, Meha Qassem, Panicos A Kyriacou
{"title":"Monte Carlo Simulation of the Effect of Melanin Concentration on Light-Tissue Interactions in Reflectance Pulse Oximetry.","authors":"Raghda Al-Halawani, Meha Qassem, Panicos A Kyriacou","doi":"10.3390/s25020559","DOIUrl":null,"url":null,"abstract":"<p><p>Over the past ten years, there has been an increasing demand for reliable consumer wearables as users are inclined to monitor their health and fitness metrics in real-time, especially since the COVID-19 pandemic. Reflectance pulse oximeters in fitness trackers and smartwatches provide convenient, non-invasive SpO<sub>2</sub> measurements but face challenges in achieving medical-grade accuracy, particularly due to difficulties in capturing physiological signals, which may be affected by skin pigmentation. Hence, this study sets out to investigate the influence of skin pigmentation, particularly in individuals with darker skin, on the accuracy and reliability of SpO<sub>2</sub> measurement in consumer wearables that utilise reflectance pulse oximeters. A Monte Carlo model is developed to assess the effect on simulated reflectance pulse oximetry measurements across light, moderate, and dark skin types for oxygen saturation levels between 70 and 100%. The results indicate that a one-algorithm-fits-all calibration approach may be insufficient, and root mean square errors (RMSEs) of at least 0.3956%, 0.9132%, and 8.4111% for light, moderate, and dark skin are observed when compared to transmittance calibration algorithms. Further research is required to validate these findings and improve the performance of reflectance pulse oximeters in real-world applications, particularly in the context of consumer wearables.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11769186/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25020559","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Over the past ten years, there has been an increasing demand for reliable consumer wearables as users are inclined to monitor their health and fitness metrics in real-time, especially since the COVID-19 pandemic. Reflectance pulse oximeters in fitness trackers and smartwatches provide convenient, non-invasive SpO2 measurements but face challenges in achieving medical-grade accuracy, particularly due to difficulties in capturing physiological signals, which may be affected by skin pigmentation. Hence, this study sets out to investigate the influence of skin pigmentation, particularly in individuals with darker skin, on the accuracy and reliability of SpO2 measurement in consumer wearables that utilise reflectance pulse oximeters. A Monte Carlo model is developed to assess the effect on simulated reflectance pulse oximetry measurements across light, moderate, and dark skin types for oxygen saturation levels between 70 and 100%. The results indicate that a one-algorithm-fits-all calibration approach may be insufficient, and root mean square errors (RMSEs) of at least 0.3956%, 0.9132%, and 8.4111% for light, moderate, and dark skin are observed when compared to transmittance calibration algorithms. Further research is required to validate these findings and improve the performance of reflectance pulse oximeters in real-world applications, particularly in the context of consumer wearables.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.