Normative Database of Spatiotemporal Gait Metrics Across Age Groups: An Observational Case-Control Study.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL Sensors Pub Date : 2025-01-20 DOI:10.3390/s25020581
Lianne Mobbs, Vinuja Fernando, R Dineth Fonseka, Pragadesh Natarajan, Monish Maharaj, Ralph J Mobbs
{"title":"Normative Database of Spatiotemporal Gait Metrics Across Age Groups: An Observational Case-Control Study.","authors":"Lianne Mobbs, Vinuja Fernando, R Dineth Fonseka, Pragadesh Natarajan, Monish Maharaj, Ralph J Mobbs","doi":"10.3390/s25020581","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Gait analysis is a vital tool in the assessment of human movement and has been widely used in clinical settings to identify potential abnormalities in individuals. However, there is a lack of consensus on the normative values for gait metrics in large populations. The primary objective of this study is to establish a normative database of spatiotemporal gait metrics across various age groups, contributing to a broader understanding of human gait dynamics. By doing so, we aim to enhance the clinical utility of gait analysis in diagnosing and managing health conditions.</p><p><strong>Methods: </strong>We conducted an observational case-control study involving 313 healthy participants. The MetaMotionC IMU by Mbientlab Inc., equipped with a triaxial accelerometer, gyroscope, and magnetometer, was used to capture gait data. The IMU was placed at the sternal angle of each participant to ensure optimal data capture during a 50 m walk along a flat, unobstructed pathway. Data were collected through a Bluetooth connection to a smartphone running a custom-developed application and subsequently analysed using IMUGaitPY, a specialised version of the GaitPY Python package.</p><p><strong>Results: </strong>The data showed that gait speeds decrease with ageing for males and females. The fastest gait speed is observed in the 41-50 age group at 1.35 ± 0.23 m/s. Males consistently exhibit faster gait speeds than females across all age groups. Step length and cadence do not have clear trends with ageing. Gait speed and step length increase consistently with height, with the tallest group (191-200 cm) walking at an average speed of 1.49 ± 0.12 m/s, with an average step length of 0.91 ± 0.05 m. Cadence, however, decreases with increasing height, with the tallest group taking 103.52 ± 5.04 steps/min on average.</p><p><strong>Conclusions: </strong>This study has established a comprehensive normative database for the spatiotemporal gait metrics of gait speed, step length, and cadence, highlighting the complexities of gait dynamics across age and sex groups and the influence of height. Our findings offer valuable reference points for clinicians to distinguish between healthy and pathological gait patterns, facilitating early detection and intervention for gait-related disorders. Moreover, this database enhances the clinical utility of gait analysis, supporting more objective diagnoses and assessments of therapeutic interventions. The normative database provides a valuable reference future research and clinical practice. It enables a more nuanced understanding of how gait evolves with age, gender, and physical stature, thus informing the development of targeted interventions to maintain mobility and prevent falls in older adults. Despite potential selection bias and the cross-sectional nature of the study, the insights gained provide a solid foundation for further longitudinal studies and diverse sampling to validate and expand upon these findings.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768510/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25020581","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Gait analysis is a vital tool in the assessment of human movement and has been widely used in clinical settings to identify potential abnormalities in individuals. However, there is a lack of consensus on the normative values for gait metrics in large populations. The primary objective of this study is to establish a normative database of spatiotemporal gait metrics across various age groups, contributing to a broader understanding of human gait dynamics. By doing so, we aim to enhance the clinical utility of gait analysis in diagnosing and managing health conditions.

Methods: We conducted an observational case-control study involving 313 healthy participants. The MetaMotionC IMU by Mbientlab Inc., equipped with a triaxial accelerometer, gyroscope, and magnetometer, was used to capture gait data. The IMU was placed at the sternal angle of each participant to ensure optimal data capture during a 50 m walk along a flat, unobstructed pathway. Data were collected through a Bluetooth connection to a smartphone running a custom-developed application and subsequently analysed using IMUGaitPY, a specialised version of the GaitPY Python package.

Results: The data showed that gait speeds decrease with ageing for males and females. The fastest gait speed is observed in the 41-50 age group at 1.35 ± 0.23 m/s. Males consistently exhibit faster gait speeds than females across all age groups. Step length and cadence do not have clear trends with ageing. Gait speed and step length increase consistently with height, with the tallest group (191-200 cm) walking at an average speed of 1.49 ± 0.12 m/s, with an average step length of 0.91 ± 0.05 m. Cadence, however, decreases with increasing height, with the tallest group taking 103.52 ± 5.04 steps/min on average.

Conclusions: This study has established a comprehensive normative database for the spatiotemporal gait metrics of gait speed, step length, and cadence, highlighting the complexities of gait dynamics across age and sex groups and the influence of height. Our findings offer valuable reference points for clinicians to distinguish between healthy and pathological gait patterns, facilitating early detection and intervention for gait-related disorders. Moreover, this database enhances the clinical utility of gait analysis, supporting more objective diagnoses and assessments of therapeutic interventions. The normative database provides a valuable reference future research and clinical practice. It enables a more nuanced understanding of how gait evolves with age, gender, and physical stature, thus informing the development of targeted interventions to maintain mobility and prevent falls in older adults. Despite potential selection bias and the cross-sectional nature of the study, the insights gained provide a solid foundation for further longitudinal studies and diverse sampling to validate and expand upon these findings.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Diagnosis of Reverse-Connection Defects in High-Voltage Cable Cross-Bonded Grounding System Based on ARO-SVM. Identifying the Primary Kinetic Factors Influencing the Anterior-Posterior Center of Mass Displacement in Barbell Squats: A Factor Regression Analysis. A Feature-Enhanced Small Object Detection Algorithm Based on Attention Mechanism. A Piecewise Linearization Based Method for Crossed Frequency Admittance Matrix Model Calculation of Harmonic Sources. A Precise Oxide Film Thickness Measurement Method Based on Swept Frequency and Transmission Cable Impedance Correction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1