Sensorless Junction Temperature Estimation of Onboard SiC MOSFETs Using Dual-Gate-Bias-Triggered Third-Quadrant Characteristics.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL Sensors Pub Date : 2025-01-20 DOI:10.3390/s25020571
Yansong Lu, Yijun Ding, Jia Li, Hao Yin, Xinlian Li, Chong Zhu, Xi Zhang
{"title":"Sensorless Junction Temperature Estimation of Onboard SiC MOSFETs Using Dual-Gate-Bias-Triggered Third-Quadrant Characteristics.","authors":"Yansong Lu, Yijun Ding, Jia Li, Hao Yin, Xinlian Li, Chong Zhu, Xi Zhang","doi":"10.3390/s25020571","DOIUrl":null,"url":null,"abstract":"<p><p>Silicon carbide (SiC) metal oxide semiconductor field-effect transistors (MOSFETs) are a future trend in traction inverters in electric vehicles (EVs), and their thermal safety is crucial. Temperature-sensitive electrical parameters' (TSEPs) indirect detection normally requires additional circuits, which can interfere with the system and increase costs, thereby limiting applications. Therefore, there is still a lack of cost-effective and sensorless thermal monitoring techniques. This paper proposes a high-efficiency datasheet-driven method for sensorless estimation utilizing the third-quadrant characteristics of MOSFETs. Without changing the existing hardware, the closure degree of MOS channels is controlled through a dual-gate bias (DGB) strategy to achieve reverse conduction in different patterns with body diodes. This method introduces a MOSFET operating current that TSEPs are equally sensitive to into the two-argument function, improving the complexity and accuracy. A two-stage current pulse is used to decouple the motor effect in various conduction modes, and the TSEP-combined temperature function is built dynamically by substituting the currents. Then, the junction temperature is estimated by the measured bus voltage and current. Its effectiveness was verified through spice model simulation and a test bench with a three-phase inverter. The average relative estimation error of the proposed method is below 7.2% in centigrade.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768603/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25020571","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Silicon carbide (SiC) metal oxide semiconductor field-effect transistors (MOSFETs) are a future trend in traction inverters in electric vehicles (EVs), and their thermal safety is crucial. Temperature-sensitive electrical parameters' (TSEPs) indirect detection normally requires additional circuits, which can interfere with the system and increase costs, thereby limiting applications. Therefore, there is still a lack of cost-effective and sensorless thermal monitoring techniques. This paper proposes a high-efficiency datasheet-driven method for sensorless estimation utilizing the third-quadrant characteristics of MOSFETs. Without changing the existing hardware, the closure degree of MOS channels is controlled through a dual-gate bias (DGB) strategy to achieve reverse conduction in different patterns with body diodes. This method introduces a MOSFET operating current that TSEPs are equally sensitive to into the two-argument function, improving the complexity and accuracy. A two-stage current pulse is used to decouple the motor effect in various conduction modes, and the TSEP-combined temperature function is built dynamically by substituting the currents. Then, the junction temperature is estimated by the measured bus voltage and current. Its effectiveness was verified through spice model simulation and a test bench with a three-phase inverter. The average relative estimation error of the proposed method is below 7.2% in centigrade.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
BSDEs Driven by Multidimensional Martingales and Their Applications to Markets with Funding Costs
IF 0.6 4区 数学Theory of Probability and its ApplicationsPub Date : 2016-12-06 DOI: 10.1137/S0040585X97T987880
Tianyang Nie, M. Rutkowski
Representation and converse comparison theorems for multidimensional BSDEs
IF 0.8 4区 数学Statistics & Probability LettersPub Date : 2017-08-01 DOI: 10.1016/j.spl.2017.03.025
Haodong Liu, Shuzhen Yang
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Physical Activity in Pre-Ambulatory Children with Cerebral Palsy: An Exploratory Validation Study to Distinguish Active vs. Sedentary Time Using Wearable Sensors. A Critical Analysis of Cooperative Caching in Ad Hoc Wireless Communication Technologies: Current Challenges and Future Directions. Hydrogenated Amorphous Silicon Charge-Selective Contact Devices on a Polyimide Flexible Substrate for Dosimetry and Beam Flux Measurements. Predicting Perennial Ryegrass Cultivars and the Presence of an Epichloë Endophyte in Seeds Using Near-Infrared Spectroscopy (NIRS). A Multi-Task Causal Knowledge Fault Diagnosis Method for PMSM-ITSF Based on Meta-Learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1