{"title":"Spatio-Temporal Joint Trajectory Planning for Autonomous Vehicles Based on Improved Constrained Iterative LQR.","authors":"Qin Li, Hongwen He, Manjiang Hu, Yong Wang","doi":"10.3390/s25020512","DOIUrl":null,"url":null,"abstract":"<p><p>With advancements in autonomous driving technology, the coupling of spatial paths and temporal speeds in complex scenarios becomes increasingly significant. Traditional sequential decoupling methods for trajectory planning are no longer sufficient, emphasizing the need for spatio-temporal joint trajectory planning. The Constrained Iterative LQR (CILQR), based on the Iterative LQR (ILQR) method, shows obvious potential but faces challenges in computational efficiency and scenario adaptability. This paper introduces three key improvements: a segmented barrier function truncation strategy with dynamic relaxation factors to enhance stability, an adaptive weight parameter adjustment method for acceleration and curvature planning, and the integration of the hybrid A* algorithm to optimize the initial reference trajectory and improve iterative efficiency. The improved CILQR method is validated through simulations and real-vehicle tests, demonstrating substantial improvements in human-like driving performance, traffic efficiency improvement, and real-time performance while maintaining comfortable driving. The experiment's results demonstrate a significant increase in human-like driving indicators by 16.35% and a 12.65% average increase in traffic efficiency, reducing computation time by 39.29%.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768669/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25020512","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
With advancements in autonomous driving technology, the coupling of spatial paths and temporal speeds in complex scenarios becomes increasingly significant. Traditional sequential decoupling methods for trajectory planning are no longer sufficient, emphasizing the need for spatio-temporal joint trajectory planning. The Constrained Iterative LQR (CILQR), based on the Iterative LQR (ILQR) method, shows obvious potential but faces challenges in computational efficiency and scenario adaptability. This paper introduces three key improvements: a segmented barrier function truncation strategy with dynamic relaxation factors to enhance stability, an adaptive weight parameter adjustment method for acceleration and curvature planning, and the integration of the hybrid A* algorithm to optimize the initial reference trajectory and improve iterative efficiency. The improved CILQR method is validated through simulations and real-vehicle tests, demonstrating substantial improvements in human-like driving performance, traffic efficiency improvement, and real-time performance while maintaining comfortable driving. The experiment's results demonstrate a significant increase in human-like driving indicators by 16.35% and a 12.65% average increase in traffic efficiency, reducing computation time by 39.29%.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.