Caution when using network partners for target identification in drug discovery.

IF 3.3 Q2 GENETICS & HEREDITY HGG Advances Pub Date : 2025-01-23 DOI:10.1016/j.xhgg.2025.100409
Dandan Tan, Yiheng Chen, Yann Ilboudo, Kevin Y H Liang, Guillaume Butler-Laporte, J Brent Richards
{"title":"Caution when using network partners for target identification in drug discovery.","authors":"Dandan Tan, Yiheng Chen, Yann Ilboudo, Kevin Y H Liang, Guillaume Butler-Laporte, J Brent Richards","doi":"10.1016/j.xhgg.2025.100409","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying novel, high-yield drug targets is challenging and often results in a high failure rate. However, recent data indicate that leveraging human genetic evidence to identify and validate these targets significantly increases the likelihood of success in drug development. Two recent papers from Open Targets claimed that around half of US Food and Drug Administration-approved drugs had targets with direct human genetic evidence. By expanding target identification to include protein network partners-molecules in physical contact-the proportion of drug targets with genetic evidence support increased to two-thirds. However, the efficacy of using these network partners for target identification was not formally tested. To address this, we tested the approach on a list of robust positive control genes. We used the IntAct database to find physically interacting proteins of genes identified by exome-wide association studies (ExWASs), genome-wide association studies (GWASs) combined with a locus-to-gene mapping algorithm called the Effector Index, and Genetic Priority Score (GPS), which integrated eight genetic features with drug indications from the Open Targets and SIDER databases. We assessed how accurately including interacting genes with the ExWAS-, Effector Index-, and GPS-selected genes identified positive controls, focusing on precision, sensitivity, and specificity. Our results indicated that although molecular interactions led to higher sensitivity in identifying positive control genes, their practical application is limited by low precision. Expanding genetically identified targets to include network partners using IntAct did not increase the likelihood of identifying drug targets across the 412 tested traits, suggesting that such results should be interpreted with caution.</p>","PeriodicalId":34530,"journal":{"name":"HGG Advances","volume":" ","pages":"100409"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HGG Advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xhgg.2025.100409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Identifying novel, high-yield drug targets is challenging and often results in a high failure rate. However, recent data indicate that leveraging human genetic evidence to identify and validate these targets significantly increases the likelihood of success in drug development. Two recent papers from Open Targets claimed that around half of US Food and Drug Administration-approved drugs had targets with direct human genetic evidence. By expanding target identification to include protein network partners-molecules in physical contact-the proportion of drug targets with genetic evidence support increased to two-thirds. However, the efficacy of using these network partners for target identification was not formally tested. To address this, we tested the approach on a list of robust positive control genes. We used the IntAct database to find physically interacting proteins of genes identified by exome-wide association studies (ExWASs), genome-wide association studies (GWASs) combined with a locus-to-gene mapping algorithm called the Effector Index, and Genetic Priority Score (GPS), which integrated eight genetic features with drug indications from the Open Targets and SIDER databases. We assessed how accurately including interacting genes with the ExWAS-, Effector Index-, and GPS-selected genes identified positive controls, focusing on precision, sensitivity, and specificity. Our results indicated that although molecular interactions led to higher sensitivity in identifying positive control genes, their practical application is limited by low precision. Expanding genetically identified targets to include network partners using IntAct did not increase the likelihood of identifying drug targets across the 412 tested traits, suggesting that such results should be interpreted with caution.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
HGG Advances
HGG Advances Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
4.30
自引率
4.50%
发文量
69
审稿时长
14 weeks
期刊最新文献
Multifaceted analysis of noncoding and coding de novo variants implicates NOTCH signaling pathway in tetralogy of Fallot in Chinese population. Unraveling the genetic landscape of susceptibility to multiple primary cancers. Unbiased causal inference with Mendelian randomization and covariate-adjusted GWAS data. Trans-ancestry genome wide association study of childhood body mass index identifies novel loci and age-specific effects. Context-specific eQTLs provide deeper insight into causal genes underlying shared genetic architecture of critically ill COVID-19 and idiopathic pulmonary fibrosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1