Pub Date : 2024-11-26DOI: 10.1016/j.xhgg.2024.100389
Daniel J Schaid, Shannon K McDonnell, Farida S Akhtari, Jason P Sinnwell, Anthony Batzler, Ewan K Cobran, Alison Motsinger-Reif
The use of polygenic scores (PGS) for personalized medicine has gained momentum, along with caution to avoid accentuating health disparities. Greater ancestral diversity in genetic studies is needed, as well as close attention to social determinants of health (SDoH ).We measured the correlations between 3,030 PGS from the PGS Catalog and SDoH among participants in the Personalized Environment and Genes Study (PEGS). Correlations mainly ranged from -0.05 to 0.05, yet there was heterogeneity of correlations across SDoH themes, with the largest amount of heterogeneity for PGS predicting body measures and smoking, as well as some common diseases. We also quantify the expected bias of PGS effect size on disease risk when strong predictors, such as SDoH, are omitted from models, emphasizing the importance of including SDoH with PGS to avoid biased estimates of PGS risk and to achieve equitable precision medicine.
{"title":"Polygenic scores and social determinants of health: their correlations and potential biases.","authors":"Daniel J Schaid, Shannon K McDonnell, Farida S Akhtari, Jason P Sinnwell, Anthony Batzler, Ewan K Cobran, Alison Motsinger-Reif","doi":"10.1016/j.xhgg.2024.100389","DOIUrl":"https://doi.org/10.1016/j.xhgg.2024.100389","url":null,"abstract":"<p><p>The use of polygenic scores (PGS) for personalized medicine has gained momentum, along with caution to avoid accentuating health disparities. Greater ancestral diversity in genetic studies is needed, as well as close attention to social determinants of health (SDoH ).We measured the correlations between 3,030 PGS from the PGS Catalog and SDoH among participants in the Personalized Environment and Genes Study (PEGS). Correlations mainly ranged from -0.05 to 0.05, yet there was heterogeneity of correlations across SDoH themes, with the largest amount of heterogeneity for PGS predicting body measures and smoking, as well as some common diseases. We also quantify the expected bias of PGS effect size on disease risk when strong predictors, such as SDoH, are omitted from models, emphasizing the importance of including SDoH with PGS to avoid biased estimates of PGS risk and to achieve equitable precision medicine.</p>","PeriodicalId":34530,"journal":{"name":"HGG Advances","volume":" ","pages":"100389"},"PeriodicalIF":3.3,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142740654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-26DOI: 10.1016/j.xhgg.2024.100388
Anne Justice, Melissa A Kelly, Gary Bellus, Joshua D Green, Raza Zaidi, Taylor Kerrins, Navya Josyula, Teresa R Luperchio, Beth A Kozel, Marc S Williams
Variation in the elastin gene (ELN) may contribute to connective tissue disease beyond the known disease associations of Supravalvar Aortic Stenosis and Cutis Laxa. Exome data from MyCode Community Health Initiative participants were analyzed for ELN rare variants (mean allele frequency <1%, not currently annotated as benign). Participants with variants of interest underwent phenotyping by dual chart review using a standardized abstraction tool. Additionally, all rare variants that met inclusion criteria were collapsed into an ELN gene burden score to perform a Phenome-wide Association Study (PheWAS). Two hundred and ninety-six eligible participants with relevant ELN variants were identified from 184,293 MyCode participants. One hundred and three of 254 living participants (41%) met phenotypic criteria, most commonly aortic hypoplasia, arterial dilation, aneurysm, and dissection, and connective tissue abnormalities. ELN variation was significantly (P <2.8x10-5) associated with "arterial dissection" in the PheWAS and two connective tissue Phecodes approached significance. Variation in ELN is associated with connective tissue pathology beyond classic phenotypes.
弹性蛋白基因(ELN)的变异可能会导致结缔组织疾病,而不局限于已知的主动脉瓣上狭窄和皮肤松弛症。对 MyCode Community Health Initiative 参与者的外显子组数据进行了分析,发现 ELN 罕见变异(平均等位基因频率 -5)与 PheWAS 中的 "动脉夹层 "有关,而且两个结缔组织 Phecodes 接近显著性。ELN的变异与结缔组织病理相关,超出了典型表型的范围。
{"title":"Phenotypic Findings Associated with Variation in Elastin.","authors":"Anne Justice, Melissa A Kelly, Gary Bellus, Joshua D Green, Raza Zaidi, Taylor Kerrins, Navya Josyula, Teresa R Luperchio, Beth A Kozel, Marc S Williams","doi":"10.1016/j.xhgg.2024.100388","DOIUrl":"https://doi.org/10.1016/j.xhgg.2024.100388","url":null,"abstract":"<p><p>Variation in the elastin gene (ELN) may contribute to connective tissue disease beyond the known disease associations of Supravalvar Aortic Stenosis and Cutis Laxa. Exome data from MyCode Community Health Initiative participants were analyzed for ELN rare variants (mean allele frequency <1%, not currently annotated as benign). Participants with variants of interest underwent phenotyping by dual chart review using a standardized abstraction tool. Additionally, all rare variants that met inclusion criteria were collapsed into an ELN gene burden score to perform a Phenome-wide Association Study (PheWAS). Two hundred and ninety-six eligible participants with relevant ELN variants were identified from 184,293 MyCode participants. One hundred and three of 254 living participants (41%) met phenotypic criteria, most commonly aortic hypoplasia, arterial dilation, aneurysm, and dissection, and connective tissue abnormalities. ELN variation was significantly (P <2.8x10<sup>-5</sup>) associated with \"arterial dissection\" in the PheWAS and two connective tissue Phecodes approached significance. Variation in ELN is associated with connective tissue pathology beyond classic phenotypes.</p>","PeriodicalId":34530,"journal":{"name":"HGG Advances","volume":" ","pages":"100388"},"PeriodicalIF":3.3,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142740649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-25DOI: 10.1016/j.xhgg.2024.100387
Bobbi McGivern, Michelle Morrow, Erin Torti, Kirsty McWalter, Ingrid M Wentzensen, Kristin G Monaghan, Amanda Gerard, Laurie Robak, David Chitayat, Claire Botsford, Sarah Jurgensmeyer, Peter Leahy, Paul Kruszka
MGA (OMIM# 616061) encodes a dual-specificity transcription factor that regulates the expression of Max-network and T-box family target genes, important in embryogenesis. Previous studies have linked MGA to various phenotypes, including neurodevelopmental disorders, congenital heart disease, and early onset Parkinson disease. Here, we describe the clinical phenotype of individuals with de novo, heterozygous predicted loss-of-function (LOF) variants in MGA, suggesting a unique disorder involving both neurodevelopmental and congenital anomalies. In addition to developmental delays, certain congenital anomalies were present in all individuals in this cohort including cardiac anomalies, male genital malformations, and craniofacial dysmorphisms. Additional findings seen in multiple individuals in this cohort include hypotonia, abnormal brain imaging, hearing loss, sleep dysfunction, urinary issues, skeletal abnormalities, and feeding difficulties. These findings provide support for MGA as a gene intolerant to protein truncating variation with a broad phenotypic spectrum.
MGA(OMIM# 616061)编码一种双重特异性转录因子,可调节胚胎发生过程中重要的 Max 网络和 T-box 家族靶基因的表达。以前的研究发现,MGA 与多种表型有关,包括神经发育障碍、先天性心脏病和早发性帕金森病。在这里,我们描述了 MGA 中具有从头、杂合性预测功能缺失(LOF)变异的个体的临床表型,这表明这是一种涉及神经发育和先天性异常的独特疾病。除发育迟缓外,该队列中的所有个体都存在某些先天性异常,包括心脏畸形、男性生殖器畸形和颅面畸形。该群体中还有多人出现肌张力低下、脑成像异常、听力损失、睡眠功能障碍、泌尿系统问题、骨骼异常和喂养困难。这些研究结果证明,MGA 是一种不耐受蛋白质截短变异的基因,具有广泛的表型谱。
{"title":"MGA-Related Syndrome: A Proposed Novel Disorder.","authors":"Bobbi McGivern, Michelle Morrow, Erin Torti, Kirsty McWalter, Ingrid M Wentzensen, Kristin G Monaghan, Amanda Gerard, Laurie Robak, David Chitayat, Claire Botsford, Sarah Jurgensmeyer, Peter Leahy, Paul Kruszka","doi":"10.1016/j.xhgg.2024.100387","DOIUrl":"https://doi.org/10.1016/j.xhgg.2024.100387","url":null,"abstract":"<p><p>MGA (OMIM# 616061) encodes a dual-specificity transcription factor that regulates the expression of Max-network and T-box family target genes, important in embryogenesis. Previous studies have linked MGA to various phenotypes, including neurodevelopmental disorders, congenital heart disease, and early onset Parkinson disease. Here, we describe the clinical phenotype of individuals with de novo, heterozygous predicted loss-of-function (LOF) variants in MGA, suggesting a unique disorder involving both neurodevelopmental and congenital anomalies. In addition to developmental delays, certain congenital anomalies were present in all individuals in this cohort including cardiac anomalies, male genital malformations, and craniofacial dysmorphisms. Additional findings seen in multiple individuals in this cohort include hypotonia, abnormal brain imaging, hearing loss, sleep dysfunction, urinary issues, skeletal abnormalities, and feeding difficulties. These findings provide support for MGA as a gene intolerant to protein truncating variation with a broad phenotypic spectrum.</p>","PeriodicalId":34530,"journal":{"name":"HGG Advances","volume":" ","pages":"100387"},"PeriodicalIF":3.3,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142733199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-22DOI: 10.1016/j.xhgg.2024.100386
Maxwell Bannister, Sarah Bray, Anjali Aggarwal, Charles Billington, Hai Dang Nguyen
ADP-ribosylation is a post-translational modification involving the transfer of one or more ADP-ribose units from NAD+ to target proteins. Dysregulation of ADP-ribosylation is implicated in neurodegenerative diseases. In this study, genetic testing via exome sequencing was used to identify the underlying disease in two siblings with developmental delay, seizures, progressive muscle weakness, and respiratory failure following an episodic course. This identified a novel homozygous variant in the ADPRS gene (c.545A>G, p.His182Arg) encoding the mono(ADP-ribosyl) hydrolase ARH3, confirming the diagnosis of childhood-onset neurodegeneration with stress-induced ataxia and seizures (CONDSIAS) in these 2 children. Mechanistically, the ARH3H182R variant affects a highly conserved residue in the active site of ARH3, leading to protein instability, degradation, and subsequently, reduced protein expression. The ARH3H182R mutant additionally fails to localize to the nucleus, which further resulted in accumulated mono-ADP ribosylated species in cells. The children's clinical course combined with the biochemical characterization of their genetic variant develops our understanding of the pathogenic mechanisms driving CONDSIAS and highlights a critical role for ARH3-regulated ADP ribosylation in nervous system integrity.
{"title":"An ADPRS variant disrupts ARH3 stability and subcellular localization in children with neurodegeneration and respiratory failure.","authors":"Maxwell Bannister, Sarah Bray, Anjali Aggarwal, Charles Billington, Hai Dang Nguyen","doi":"10.1016/j.xhgg.2024.100386","DOIUrl":"10.1016/j.xhgg.2024.100386","url":null,"abstract":"<p><p>ADP-ribosylation is a post-translational modification involving the transfer of one or more ADP-ribose units from NAD+ to target proteins. Dysregulation of ADP-ribosylation is implicated in neurodegenerative diseases. In this study, genetic testing via exome sequencing was used to identify the underlying disease in two siblings with developmental delay, seizures, progressive muscle weakness, and respiratory failure following an episodic course. This identified a novel homozygous variant in the ADPRS gene (c.545A>G, p.His182Arg) encoding the mono(ADP-ribosyl) hydrolase ARH3, confirming the diagnosis of childhood-onset neurodegeneration with stress-induced ataxia and seizures (CONDSIAS) in these 2 children. Mechanistically, the ARH3<sup>H182R</sup> variant affects a highly conserved residue in the active site of ARH3, leading to protein instability, degradation, and subsequently, reduced protein expression. The ARH3<sup>H182R</sup> mutant additionally fails to localize to the nucleus, which further resulted in accumulated mono-ADP ribosylated species in cells. The children's clinical course combined with the biochemical characterization of their genetic variant develops our understanding of the pathogenic mechanisms driving CONDSIAS and highlights a critical role for ARH3-regulated ADP ribosylation in nervous system integrity.</p>","PeriodicalId":34530,"journal":{"name":"HGG Advances","volume":" ","pages":"100386"},"PeriodicalIF":3.3,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142711255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-22DOI: 10.1016/j.xhgg.2024.100385
Jasmine A Mack, Adam Burkholder, Farida S Akhtari, John S House, Ulla Sovio, Gordon C S Smith, Charles P Schmitt, David C Fargo, Janet E Hall, Alison A Motsinger-Reif
Genetic factors related to pregnancy-related traits are understudied, especially in ancestrally diverse cohorts. To assess maternal contributions to hypertensive disorders of pregnancy (HDP, we performed a multi-ancestry genome-wide association study (GWAS) of HDP in data from the North Carolina-based Personalized Environment and Genes Study (PEGS) cohort with validation in the UK Biobank (UKBB). The GWAS revealed two maternal loci associated with HDP at the genome-wide significance level. The lead independent variants were rs114954125 on chromosome 2 (near LRP1B; OR (95% CI): 2.96 (2.02,4.34); P=2.82 x 10-8) and rs61176331 on chromosome 3 (on RARB; OR (95% CI): 3.08 (2.12,4.48); P=3.52 x 10-9). We validated the associations near RARB with a meta-analysis of PEGS and the UK Biobank. We also identified cis-eQTLs in the candidate region associated with decreased RARB expression in macrophage cells exposed to Salmonella. Chromatin mapping in FUMA identified a significant interaction within chromosome 3's enhancer and open chromatin regions, with strong effects observed for RARB and H3P10 gene regulation in mesendoderm cells, mesenchymal stem cells, and trophoblast-like stem cells. We applied existing polygenic scores (PGS) for preeclampsia and gestational hypertension and found the scores were significantly associated with HDP in PEGS. The findings demonstrate the power of multi-ancestry studies for genetic discovery and highlight the relationship between immune response, regulation, and HDP and the utility of PGS for risk prediction.
{"title":"A multi-ancestry genome-wide association study identifies novel candidate loci in the RARB gene associated with hypertensive disorders of pregnancy.","authors":"Jasmine A Mack, Adam Burkholder, Farida S Akhtari, John S House, Ulla Sovio, Gordon C S Smith, Charles P Schmitt, David C Fargo, Janet E Hall, Alison A Motsinger-Reif","doi":"10.1016/j.xhgg.2024.100385","DOIUrl":"https://doi.org/10.1016/j.xhgg.2024.100385","url":null,"abstract":"<p><p>Genetic factors related to pregnancy-related traits are understudied, especially in ancestrally diverse cohorts. To assess maternal contributions to hypertensive disorders of pregnancy (HDP, we performed a multi-ancestry genome-wide association study (GWAS) of HDP in data from the North Carolina-based Personalized Environment and Genes Study (PEGS) cohort with validation in the UK Biobank (UKBB). The GWAS revealed two maternal loci associated with HDP at the genome-wide significance level. The lead independent variants were rs114954125 on chromosome 2 (near LRP1B; OR (95% CI): 2.96 (2.02,4.34); P=2.82 x 10<sup>-8</sup>) and rs61176331 on chromosome 3 (on RARB; OR (95% CI): 3.08 (2.12,4.48); P=3.52 x 10<sup>-9</sup>). We validated the associations near RARB with a meta-analysis of PEGS and the UK Biobank. We also identified cis-eQTLs in the candidate region associated with decreased RARB expression in macrophage cells exposed to Salmonella. Chromatin mapping in FUMA identified a significant interaction within chromosome 3's enhancer and open chromatin regions, with strong effects observed for RARB and H3P10 gene regulation in mesendoderm cells, mesenchymal stem cells, and trophoblast-like stem cells. We applied existing polygenic scores (PGS) for preeclampsia and gestational hypertension and found the scores were significantly associated with HDP in PEGS. The findings demonstrate the power of multi-ancestry studies for genetic discovery and highlight the relationship between immune response, regulation, and HDP and the utility of PGS for risk prediction.</p>","PeriodicalId":34530,"journal":{"name":"HGG Advances","volume":" ","pages":"100385"},"PeriodicalIF":3.3,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142711251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-19DOI: 10.1016/j.xhgg.2024.100384
Erfan Aref-Eshghi, Katherine J Anderson, Lauren Boulay, Kathleen Brown, Jessica Duis, Christine A Giummo, Jessica Ogawa, Deanna Alexis Carere, Elizabeth A Normand, Yaping Qian, Kirsty McWalter, Erin Torti
RUNX1T1 (ETO) encodes a transcription regulator for hematopoietic genes and is well-known for its involvement in hematologic malignancies, particularly acute myeloid leukemia (AML). However, its role in congenital disease is less understood. This study provides detailed clinical and molecular information on three cases exhibiting neurodevelopmental and congenital anomalies with germline de novo alterations in RUNX1T1. One case features a de novo nonsense variant in the 5' region of the gene (p.Gln36Ter), while the other two harbor de novo missense variants in the C-terminus end (p.Gly412Arg and p.His521Tyr). Common features across cases include craniofacial dysmorphism and neurodevelopmental issues including developmental delay, learning disabilities, attention deficit hyperactivity disorder, and autism. This study, in conjunction with previously reported germline disruptions of RUNX1T1, provides evidence supporting the role of germline RUNX1T1 variation in human congenital neurodevelopmental disorders.
{"title":"Germline De Novo Alterations of RUNX1T1 in Individuals with Neurodevelopmental and Congenital Anomalies.","authors":"Erfan Aref-Eshghi, Katherine J Anderson, Lauren Boulay, Kathleen Brown, Jessica Duis, Christine A Giummo, Jessica Ogawa, Deanna Alexis Carere, Elizabeth A Normand, Yaping Qian, Kirsty McWalter, Erin Torti","doi":"10.1016/j.xhgg.2024.100384","DOIUrl":"https://doi.org/10.1016/j.xhgg.2024.100384","url":null,"abstract":"<p><p>RUNX1T1 (ETO) encodes a transcription regulator for hematopoietic genes and is well-known for its involvement in hematologic malignancies, particularly acute myeloid leukemia (AML). However, its role in congenital disease is less understood. This study provides detailed clinical and molecular information on three cases exhibiting neurodevelopmental and congenital anomalies with germline de novo alterations in RUNX1T1. One case features a de novo nonsense variant in the 5' region of the gene (p.Gln36Ter), while the other two harbor de novo missense variants in the C-terminus end (p.Gly412Arg and p.His521Tyr). Common features across cases include craniofacial dysmorphism and neurodevelopmental issues including developmental delay, learning disabilities, attention deficit hyperactivity disorder, and autism. This study, in conjunction with previously reported germline disruptions of RUNX1T1, provides evidence supporting the role of germline RUNX1T1 variation in human congenital neurodevelopmental disorders.</p>","PeriodicalId":34530,"journal":{"name":"HGG Advances","volume":" ","pages":"100384"},"PeriodicalIF":3.3,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142682914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-13DOI: 10.1016/j.xhgg.2024.100383
Daiwei Zhang, Boran Gao, Qidi Feng, Ani Manichaikul, Gina M Peloso, Russell P Tracy, Peter Durda, Kent D Taylor, Yongmei Liu, W Craig Johnson, Stacey Gabriel, Namrata Gupta, Joshua D Smith, Francois Aguet, Kristin G Ardlie, Thomas W Blackwell, Robert E Gerszten, Stephen S Rich, Jerome I Rotter, Laura J Scott, Xiang Zhou, Seunggeun Lee
Blood lipid traits are treatable and heritable risk factors for heart disease, a leading cause of mortality worldwide. Although genome-wide association studies (GWAS) have discovered hundreds of variants associated with lipids in humans, most of the causal mechanisms of lipids remain unknown. To better understand the biological processes underlying lipid metabolism, we investigated the associations of plasma protein levels with total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL), and low-density lipoprotein cholesterol (LDL) in blood. We trained protein prediction models based on samples in the Multi-Ethnic Study of Atherosclerosis (MESA) and applied them to conduct proteome-wide association studies (PWAS) for lipids using the Global Lipids Genetics Consortium (GLGC) data. Of the 749 proteins tested, 42 were significantly associated with at least one lipid trait. Furthermore, we performed transcriptome-wide association studies (TWAS) for lipids using 9,714 gene expression prediction models trained on samples from peripheral blood mononuclear cells (PBMCs) in MESA and 49 tissues in the Genotype-Tissue Expression (GTEx) project. We found that although PWAS and TWAS can show different directions of associations in an individual gene, 40 out of 49 tissues showed a positive correlation between PWAS and TWAS signed p-values across all the genes, which suggests a high-level consistency between proteome-lipid associations and transcriptome-lipid associations.
{"title":"Proteome-Wide Association Studies for Blood Lipids and Comparison with Transcriptome-Wide Association Studies.","authors":"Daiwei Zhang, Boran Gao, Qidi Feng, Ani Manichaikul, Gina M Peloso, Russell P Tracy, Peter Durda, Kent D Taylor, Yongmei Liu, W Craig Johnson, Stacey Gabriel, Namrata Gupta, Joshua D Smith, Francois Aguet, Kristin G Ardlie, Thomas W Blackwell, Robert E Gerszten, Stephen S Rich, Jerome I Rotter, Laura J Scott, Xiang Zhou, Seunggeun Lee","doi":"10.1016/j.xhgg.2024.100383","DOIUrl":"10.1016/j.xhgg.2024.100383","url":null,"abstract":"<p><p>Blood lipid traits are treatable and heritable risk factors for heart disease, a leading cause of mortality worldwide. Although genome-wide association studies (GWAS) have discovered hundreds of variants associated with lipids in humans, most of the causal mechanisms of lipids remain unknown. To better understand the biological processes underlying lipid metabolism, we investigated the associations of plasma protein levels with total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL), and low-density lipoprotein cholesterol (LDL) in blood. We trained protein prediction models based on samples in the Multi-Ethnic Study of Atherosclerosis (MESA) and applied them to conduct proteome-wide association studies (PWAS) for lipids using the Global Lipids Genetics Consortium (GLGC) data. Of the 749 proteins tested, 42 were significantly associated with at least one lipid trait. Furthermore, we performed transcriptome-wide association studies (TWAS) for lipids using 9,714 gene expression prediction models trained on samples from peripheral blood mononuclear cells (PBMCs) in MESA and 49 tissues in the Genotype-Tissue Expression (GTEx) project. We found that although PWAS and TWAS can show different directions of associations in an individual gene, 40 out of 49 tissues showed a positive correlation between PWAS and TWAS signed p-values across all the genes, which suggests a high-level consistency between proteome-lipid associations and transcriptome-lipid associations.</p>","PeriodicalId":34530,"journal":{"name":"HGG Advances","volume":" ","pages":"100383"},"PeriodicalIF":3.3,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142629679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1016/j.xhgg.2024.100380
Liselot van der Laan, Ananília Silva, Lotte Kleinendorst, Kathleen Rooney, Sadegheh Haghshenas, Peter Lauffer, Yasemin Alanay, Pratibha Bhai, Alfredo Brusco, Sonja de Munnik, Bert B A de Vries, Angelica Delgado Vega, Marc Engelen, Johanna C Herkert, Ron Hochstenbach, Saskia Hopman, Sarina G Kant, Ryutaro Kira, Mitsuhiro Kato, Boris Keren, Hester Y Kroes, Michael A Levy, Ngu Lock-Hock, Saskia M Maas, Grazia M S Mancini, Carlo Marcelis, Naomichi Matsumoto, Takeshi Mizuguchi, Alessandro Mussa, Cyril Mignot, Anu Närhi, Ann Nordgren, Rolph Pfundt, Abeltje M Polstra, Slavica Trajkova, Yolande van Bever, Marie José van den Boogaard, Jasper J van der Smagt, Tahsin Stefan Barakat, Mariëlle Alders, Marcel M A M Mannens, Bekim Sadikovic, Mieke M van Haelst, Peter Henneman
Neurodevelopmental disorder with or without autism or seizures (NEDAUS) is a neurodevelopmental disorder characterized by global developmental delay, speech delay, seizures, autistic features, and/or behavior abnormalities. It is caused by CUL3 (Cullin-3 ubiquitin ligase) haploinsufficiency. We collected clinical and molecular data from 26 individuals carrying pathogenic variants and variants of uncertain significance (VUS) in the CUL3 gene, including 20 previously unreported cases. By comparing their DNA methylation (DNAm) classifiers with those of healthy controls and other neurodevelopmental disorders characterized by established episignatures, we aimed to create a diagnostic biomarker (episignature) and gain more knowledge of the molecular pathophysiology. We discovered a sensitive and specific DNAm episignature for patients with pathogenic variants in CUL3 and utilized it to reclassify patients carrying a VUS in the CUL3 gene. Comparative epigenomic analysis revealed similarities between NEDAUS and several other rare genetic neurodevelopmental disorders with previously identified episignatures, highlighting the broader implication of our findings. In addition, we performed genotype-phenotype correlation studies to explain the variety in clinical presentation between the cases. We discovered a highly accurate DNAm episignature serving as a robust diagnostic biomarker for NEDAUS. Furthermore, we broadened the phenotypic spectrum by identifying 20 new individuals and confirming five previously reported cases of NEDAUS.
{"title":"CUL3-related neurodevelopmental disorder: Clinical phenotype of 20 new individuals and identification of a potential phenotype-associated episignature.","authors":"Liselot van der Laan, Ananília Silva, Lotte Kleinendorst, Kathleen Rooney, Sadegheh Haghshenas, Peter Lauffer, Yasemin Alanay, Pratibha Bhai, Alfredo Brusco, Sonja de Munnik, Bert B A de Vries, Angelica Delgado Vega, Marc Engelen, Johanna C Herkert, Ron Hochstenbach, Saskia Hopman, Sarina G Kant, Ryutaro Kira, Mitsuhiro Kato, Boris Keren, Hester Y Kroes, Michael A Levy, Ngu Lock-Hock, Saskia M Maas, Grazia M S Mancini, Carlo Marcelis, Naomichi Matsumoto, Takeshi Mizuguchi, Alessandro Mussa, Cyril Mignot, Anu Närhi, Ann Nordgren, Rolph Pfundt, Abeltje M Polstra, Slavica Trajkova, Yolande van Bever, Marie José van den Boogaard, Jasper J van der Smagt, Tahsin Stefan Barakat, Mariëlle Alders, Marcel M A M Mannens, Bekim Sadikovic, Mieke M van Haelst, Peter Henneman","doi":"10.1016/j.xhgg.2024.100380","DOIUrl":"10.1016/j.xhgg.2024.100380","url":null,"abstract":"<p><p>Neurodevelopmental disorder with or without autism or seizures (NEDAUS) is a neurodevelopmental disorder characterized by global developmental delay, speech delay, seizures, autistic features, and/or behavior abnormalities. It is caused by CUL3 (Cullin-3 ubiquitin ligase) haploinsufficiency. We collected clinical and molecular data from 26 individuals carrying pathogenic variants and variants of uncertain significance (VUS) in the CUL3 gene, including 20 previously unreported cases. By comparing their DNA methylation (DNAm) classifiers with those of healthy controls and other neurodevelopmental disorders characterized by established episignatures, we aimed to create a diagnostic biomarker (episignature) and gain more knowledge of the molecular pathophysiology. We discovered a sensitive and specific DNAm episignature for patients with pathogenic variants in CUL3 and utilized it to reclassify patients carrying a VUS in the CUL3 gene. Comparative epigenomic analysis revealed similarities between NEDAUS and several other rare genetic neurodevelopmental disorders with previously identified episignatures, highlighting the broader implication of our findings. In addition, we performed genotype-phenotype correlation studies to explain the variety in clinical presentation between the cases. We discovered a highly accurate DNAm episignature serving as a robust diagnostic biomarker for NEDAUS. Furthermore, we broadened the phenotypic spectrum by identifying 20 new individuals and confirming five previously reported cases of NEDAUS.</p>","PeriodicalId":34530,"journal":{"name":"HGG Advances","volume":" ","pages":"100380"},"PeriodicalIF":3.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142584446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1016/j.xhgg.2024.100381
Keira J A Johnston, Rebecca Signer, Laura M Huckins
Chronic overlapping pain conditions (COPCs) are a subset of chronic pain conditions commonly comorbid with one another and more prevalent in women and individuals assigned female at birth (AFAB). Pain experience in these conditions may better fit with a new mechanistic pain descriptor, nociplastic pain, and nociplastic pain may represent a shared underlying factor among COPCs. We applied GenomicSEM common-factor genome-wide association study (GWAS) and multivariate transcriptome-wide association (TWAS) analyses to existing GWAS output for six COPCs in order to find genetic variation associated with nociplastic pain, followed by genetic correlation (linkage disequilibrium score regression), gene set, and tissue enrichment analyses. We found 24 independent single nucleotide polymorphisms (SNPs), and 127 unique genes significantly associated with nociplastic pain, and showed nociplastic pain to be a polygenic trait with significant SNP heritability. We found significant genetic overlap between multisite chronic pain and nociplastic pain, and to a smaller extent with rheumatoid arthritis and a neuropathic pain phenotype. Tissue enrichment analyses highlighted cardiac and thyroid tissue, and gene set enrichment analyses emphasized potential shared mechanisms in cognitive, personality, and metabolic traits and nociplastic pain along with distinct pathology in migraine and headache. We used a well-powered network approach to investigate nociplastic pain using existing COPC GWAS output, and show nociplastic pain to be a complex, heritable trait, in addition to contributing to understanding of potential mechanisms in development of nociplastic pain.
{"title":"Chronic overlapping pain conditions and nociplastic pain.","authors":"Keira J A Johnston, Rebecca Signer, Laura M Huckins","doi":"10.1016/j.xhgg.2024.100381","DOIUrl":"10.1016/j.xhgg.2024.100381","url":null,"abstract":"<p><p>Chronic overlapping pain conditions (COPCs) are a subset of chronic pain conditions commonly comorbid with one another and more prevalent in women and individuals assigned female at birth (AFAB). Pain experience in these conditions may better fit with a new mechanistic pain descriptor, nociplastic pain, and nociplastic pain may represent a shared underlying factor among COPCs. We applied GenomicSEM common-factor genome-wide association study (GWAS) and multivariate transcriptome-wide association (TWAS) analyses to existing GWAS output for six COPCs in order to find genetic variation associated with nociplastic pain, followed by genetic correlation (linkage disequilibrium score regression), gene set, and tissue enrichment analyses. We found 24 independent single nucleotide polymorphisms (SNPs), and 127 unique genes significantly associated with nociplastic pain, and showed nociplastic pain to be a polygenic trait with significant SNP heritability. We found significant genetic overlap between multisite chronic pain and nociplastic pain, and to a smaller extent with rheumatoid arthritis and a neuropathic pain phenotype. Tissue enrichment analyses highlighted cardiac and thyroid tissue, and gene set enrichment analyses emphasized potential shared mechanisms in cognitive, personality, and metabolic traits and nociplastic pain along with distinct pathology in migraine and headache. We used a well-powered network approach to investigate nociplastic pain using existing COPC GWAS output, and show nociplastic pain to be a complex, heritable trait, in addition to contributing to understanding of potential mechanisms in development of nociplastic pain.</p>","PeriodicalId":34530,"journal":{"name":"HGG Advances","volume":" ","pages":"100381"},"PeriodicalIF":3.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142577061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1016/j.xhgg.2024.100379
Swetha Ramadesikan, Iftekhar A Showpnil, Mohammad Marhabaie, Allison Daley, Elizabeth A Varga, Umamaheswaran Gurusamy, Matthew T Pastore, Emily R Sites, Murugu Manickam, Dennis W Bartholomew, Jesse M Hunter, Peter White, Richard K Wilson, Rolf W Stottmann, Daniel C Koboldt
De novo variants in CSNK2A1 cause autosomal dominant Okur-Chung neurodevelopmental syndrome (OCNDS). OCNDS has an evolving clinical phenotype predominantly characterized by intellectual disability, global delays, dysmorphic features, and immunological manifestations. Microcephaly, defined as a small head circumference, is not widely recognized as a classical clinical presentation. Here, we describe four individuals from three unrelated families who shared several clinical features characteristic of an underlying syndromic neurodevelopmental condition. Trio clinical exome and research genome sequencing revealed that all affected individuals had heterozygous pathogenic missense variants in CSNK2A1. Two variants (c.468T>A p.Asp156Glu and c.149A>G p.Tyr50Cys) were de novo and previously reported, but the third variant (c.137G>T p.Gly46Val) is novel and segregated in two affected individuals in a family. This adds to growing evidence of inherited disease-causing variants in CSNK2A1, an observation reported only twice previously. A detailed phenotypic analysis of our cohort together with those individuals reported in the literature revealed that OCNDS individuals, on average, have a smaller head circumference with one-third presenting with microcephaly. We also show that the incidence of microcephaly is significantly correlated with the location of the variant in the encoded protein. Our findings suggest that small head circumference is a common but under-recognized feature of OCNDS, which may not be apparent at birth.
{"title":"Expanding the phenotypic spectrum of CSNK2A1-associated Okur-Chung neurodevelopmental syndrome.","authors":"Swetha Ramadesikan, Iftekhar A Showpnil, Mohammad Marhabaie, Allison Daley, Elizabeth A Varga, Umamaheswaran Gurusamy, Matthew T Pastore, Emily R Sites, Murugu Manickam, Dennis W Bartholomew, Jesse M Hunter, Peter White, Richard K Wilson, Rolf W Stottmann, Daniel C Koboldt","doi":"10.1016/j.xhgg.2024.100379","DOIUrl":"10.1016/j.xhgg.2024.100379","url":null,"abstract":"<p><p>De novo variants in CSNK2A1 cause autosomal dominant Okur-Chung neurodevelopmental syndrome (OCNDS). OCNDS has an evolving clinical phenotype predominantly characterized by intellectual disability, global delays, dysmorphic features, and immunological manifestations. Microcephaly, defined as a small head circumference, is not widely recognized as a classical clinical presentation. Here, we describe four individuals from three unrelated families who shared several clinical features characteristic of an underlying syndromic neurodevelopmental condition. Trio clinical exome and research genome sequencing revealed that all affected individuals had heterozygous pathogenic missense variants in CSNK2A1. Two variants (c.468T>A p.Asp156Glu and c.149A>G p.Tyr50Cys) were de novo and previously reported, but the third variant (c.137G>T p.Gly46Val) is novel and segregated in two affected individuals in a family. This adds to growing evidence of inherited disease-causing variants in CSNK2A1, an observation reported only twice previously. A detailed phenotypic analysis of our cohort together with those individuals reported in the literature revealed that OCNDS individuals, on average, have a smaller head circumference with one-third presenting with microcephaly. We also show that the incidence of microcephaly is significantly correlated with the location of the variant in the encoded protein. Our findings suggest that small head circumference is a common but under-recognized feature of OCNDS, which may not be apparent at birth.</p>","PeriodicalId":34530,"journal":{"name":"HGG Advances","volume":" ","pages":"100379"},"PeriodicalIF":3.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142577062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}