{"title":"Unrolled deep learning for breast cancer detection using limited-view photoacoustic tomography data.","authors":"Mary John, Imad Barhumi","doi":"10.1007/s11517-025-03302-4","DOIUrl":null,"url":null,"abstract":"<p><p>Photoacoustic tomography (PAT) has emerged as a promising imaging modality for breast cancer detection, offering unique advantages in visualizing tissue composition without ionizing radiation. However, limited-view scenarios in clinical settings present significant challenges for image reconstruction quality and computational efficiency. This paper introduces novel unrolled deep learning networks based on split Bregman total variation (SBTV) and relaxed basis pursuit alternating direction method of multipliers (rBP-ADMM) algorithms to address these challenges. Our approach combines transfer learning from full-view to limited-view scenarios with U-Net denoiser integration, achieving state-of-the-art reconstruction quality (MS-SSIM> 0.95) while reducing reconstruction time by 92% compared to traditional methods. The effectiveness of different sensor configurations is analyzed through restricted isometry property (RIP) analysis and coherence values, demonstrating that semicircular arrays achieve a RIP constant of 0.76 and coherence of 0.77, closely approximating full-view performance (RIP: 0.75, coherence: 0.78). These metrics validate the theoretical foundation for accurate sparse signal recovery in limited-view scenarios. Comprehensive evaluations across semicircular, concave, and convex sensor arrangements show that the proposed U-SBTV network consistently outperforms existing methods, particularly when combined with the U-Net denoiser. This advancement in limited-view PAT reconstruction brings the technology closer to practical clinical application, potentially improving early breast cancer detection capabilities.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03302-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Photoacoustic tomography (PAT) has emerged as a promising imaging modality for breast cancer detection, offering unique advantages in visualizing tissue composition without ionizing radiation. However, limited-view scenarios in clinical settings present significant challenges for image reconstruction quality and computational efficiency. This paper introduces novel unrolled deep learning networks based on split Bregman total variation (SBTV) and relaxed basis pursuit alternating direction method of multipliers (rBP-ADMM) algorithms to address these challenges. Our approach combines transfer learning from full-view to limited-view scenarios with U-Net denoiser integration, achieving state-of-the-art reconstruction quality (MS-SSIM> 0.95) while reducing reconstruction time by 92% compared to traditional methods. The effectiveness of different sensor configurations is analyzed through restricted isometry property (RIP) analysis and coherence values, demonstrating that semicircular arrays achieve a RIP constant of 0.76 and coherence of 0.77, closely approximating full-view performance (RIP: 0.75, coherence: 0.78). These metrics validate the theoretical foundation for accurate sparse signal recovery in limited-view scenarios. Comprehensive evaluations across semicircular, concave, and convex sensor arrangements show that the proposed U-SBTV network consistently outperforms existing methods, particularly when combined with the U-Net denoiser. This advancement in limited-view PAT reconstruction brings the technology closer to practical clinical application, potentially improving early breast cancer detection capabilities.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).