{"title":"Identifying protected health information by transformers-based deep learning approach in Chinese medical text.","authors":"Kun Xu, Yang Song, Jingdong Ma","doi":"10.1177/14604582251315594","DOIUrl":null,"url":null,"abstract":"<p><p><b>Purpose:</b> In the context of Chinese clinical texts, this paper aims to propose a deep learning algorithm based on Bidirectional Encoder Representation from Transformers (BERT) to identify privacy information and to verify the feasibility of our method for privacy protection in the Chinese clinical context. <b>Methods:</b> We collected and double-annotated 33,017 discharge summaries from 151 medical institutions on a municipal regional health information platform, developed a BERT-based Bidirectional Long Short-Term Memory Model (BiLSTM) and Conditional Random Field (CRF) model, and tested the performance of privacy identification on the dataset. To explore the performance of different substructures of the neural network, we created five additional baseline models and evaluated the impact of different models on performance. <b>Results:</b> Based on the annotated data, the BERT model pre-trained with the medical corpus showed a significant performance improvement to the BiLSTM-CRF model with a micro-recall of 0.979 and an F1 value of 0.976, which indicates that the model has promising performance in identifying private information in Chinese clinical texts. <b>Conclusions:</b> The BERT-based BiLSTM-CRF model excels in identifying privacy information in Chinese clinical texts, and the application of this model is very effective in protecting patient privacy and facilitating data sharing.</p>","PeriodicalId":55069,"journal":{"name":"Health Informatics Journal","volume":"31 1","pages":"14604582251315594"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Informatics Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/14604582251315594","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: In the context of Chinese clinical texts, this paper aims to propose a deep learning algorithm based on Bidirectional Encoder Representation from Transformers (BERT) to identify privacy information and to verify the feasibility of our method for privacy protection in the Chinese clinical context. Methods: We collected and double-annotated 33,017 discharge summaries from 151 medical institutions on a municipal regional health information platform, developed a BERT-based Bidirectional Long Short-Term Memory Model (BiLSTM) and Conditional Random Field (CRF) model, and tested the performance of privacy identification on the dataset. To explore the performance of different substructures of the neural network, we created five additional baseline models and evaluated the impact of different models on performance. Results: Based on the annotated data, the BERT model pre-trained with the medical corpus showed a significant performance improvement to the BiLSTM-CRF model with a micro-recall of 0.979 and an F1 value of 0.976, which indicates that the model has promising performance in identifying private information in Chinese clinical texts. Conclusions: The BERT-based BiLSTM-CRF model excels in identifying privacy information in Chinese clinical texts, and the application of this model is very effective in protecting patient privacy and facilitating data sharing.
期刊介绍:
Health Informatics Journal is an international peer-reviewed journal. All papers submitted to Health Informatics Journal are subject to peer review by members of a carefully appointed editorial board. The journal operates a conventional single-blind reviewing policy in which the reviewer’s name is always concealed from the submitting author.