Total population for a resource-limited single consumer model.

IF 2.2 4区 数学 Q2 BIOLOGY Journal of Mathematical Biology Pub Date : 2025-01-25 DOI:10.1007/s00285-025-02186-0
Xiaoqing He, Wei-Ming Ni, Zihan Ye, Bo Zhang
{"title":"Total population for a resource-limited single consumer model.","authors":"Xiaoqing He, Wei-Ming Ni, Zihan Ye, Bo Zhang","doi":"10.1007/s00285-025-02186-0","DOIUrl":null,"url":null,"abstract":"<p><p>In the past several decades, much attention has been focused on the effects of dispersal on total populations of species. In Zhang (EL 20:1118-1128, 2017), a rigorous biological experiment was performed to confirm the mathematical conclusion: Dispersal tends to enhance populations under a suitable hypothesis. In addition, mathematical models keeping track of resource dynamics in population growth were also proposed in Zhang (EL 20:1118-1128, 2017) to understand this remarkable phenomenon. In these models, the self-regulated quantity \"loss rate\" of the population seems, in general, difficult to measure experimentally. Our main goal in this paper is to study the effects of relations between the loss rate and the resources, the role of dispersal, and the impact of their interactions on total populations. We compare the total population for small and large diffusion under various correlations between loss rate and the resources. Biological evidence seems to support some specific correlations between the loss rate and the resources.</p>","PeriodicalId":50148,"journal":{"name":"Journal of Mathematical Biology","volume":"90 2","pages":"20"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-025-02186-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In the past several decades, much attention has been focused on the effects of dispersal on total populations of species. In Zhang (EL 20:1118-1128, 2017), a rigorous biological experiment was performed to confirm the mathematical conclusion: Dispersal tends to enhance populations under a suitable hypothesis. In addition, mathematical models keeping track of resource dynamics in population growth were also proposed in Zhang (EL 20:1118-1128, 2017) to understand this remarkable phenomenon. In these models, the self-regulated quantity "loss rate" of the population seems, in general, difficult to measure experimentally. Our main goal in this paper is to study the effects of relations between the loss rate and the resources, the role of dispersal, and the impact of their interactions on total populations. We compare the total population for small and large diffusion under various correlations between loss rate and the resources. Biological evidence seems to support some specific correlations between the loss rate and the resources.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.30
自引率
5.30%
发文量
120
审稿时长
6 months
期刊介绍: The Journal of Mathematical Biology focuses on mathematical biology - work that uses mathematical approaches to gain biological understanding or explain biological phenomena. Areas of biology covered include, but are not restricted to, cell biology, physiology, development, neurobiology, genetics and population genetics, population biology, ecology, behavioural biology, evolution, epidemiology, immunology, molecular biology, biofluids, DNA and protein structure and function. All mathematical approaches including computational and visualization approaches are appropriate.
期刊最新文献
A branching model for intergenerational telomere length dynamics. Total population for a resource-limited single consumer model. Persistent prey species in the Lotka-Volterra apparent competition system with a single shared predator. Numerical dynamics and optimal control for multi-strain age-structured epidemic model. Reaction-advection-diffusion model of highly pathogenic avian influenza with behavior of migratory wild birds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1