Phylogenomic analyses re-evaluate the backbone of Corylus and unravel extensive signals of reticulate evolution

IF 3.6 1区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Phylogenetics and Evolution Pub Date : 2025-01-22 DOI:10.1016/j.ympev.2025.108293
Zhen Yang , Lisong Liang , Weibo Xiang , Qiong Wu , Lujun Wang , Qinghua Ma
{"title":"Phylogenomic analyses re-evaluate the backbone of Corylus and unravel extensive signals of reticulate evolution","authors":"Zhen Yang ,&nbsp;Lisong Liang ,&nbsp;Weibo Xiang ,&nbsp;Qiong Wu ,&nbsp;Lujun Wang ,&nbsp;Qinghua Ma","doi":"10.1016/j.ympev.2025.108293","DOIUrl":null,"url":null,"abstract":"<div><div>Phylogenomic analyses have shown that reticulate evolution greatly affects the accuracy of phylogenetic inferences, and thus may challenge the authority of bifurcating phylogenetic trees. In this study, we re-evaluated the phylogenetic backbone of the genus <em>Corylus</em> based on complete taxon sampling and genomic data. We assembled 581 single-copy nuclear genes and whole plastomes from 64 genome resequencing datasets to elucidate the reticulate relationships within <em>Corylus</em>. Nuclear coalescent and concatenation phylogenies revealed identical and fully supported backbone, clarifying the sisterhood between sect. <em>Acanthochlamys</em> and sect. <em>Siphonochlamys</em> as well as the phylogenetic position of <em>C. fargesii</em> and <em>C. wangii</em>, which have yet been addressed in previous phylogenetic studies. However, the monophyly of <em>C. jacquemontii</em> and <em>C. kwechowensis</em> and the distinction between <em>C. ferox</em> and <em>C. ferox</em> var. <em>thibetica</em> were not supported. Gene trees-species tree conflicts and cytonuclear discordance were identified, with multiple evidences supporting that hybridization/introgression, coupled with incomplete lineage sorting, have led to substantial phylogenetic incongruence in <em>Corylus</em>. Moreover, typical geographical clustering rather than strict monophyletic pattern in plastome phylogeny implies chloroplast capture within <em>Corylus</em> and offers evidence of cytoplasmic introgression. Overall, this study provides a robust phylogenomic backbone for <em>Corylus</em> and unravels that reticulate evolution can greatly shape taxonomic revision.</div></div>","PeriodicalId":56109,"journal":{"name":"Molecular Phylogenetics and Evolution","volume":"204 ","pages":"Article 108293"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Phylogenetics and Evolution","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1055790325000107","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Phylogenomic analyses have shown that reticulate evolution greatly affects the accuracy of phylogenetic inferences, and thus may challenge the authority of bifurcating phylogenetic trees. In this study, we re-evaluated the phylogenetic backbone of the genus Corylus based on complete taxon sampling and genomic data. We assembled 581 single-copy nuclear genes and whole plastomes from 64 genome resequencing datasets to elucidate the reticulate relationships within Corylus. Nuclear coalescent and concatenation phylogenies revealed identical and fully supported backbone, clarifying the sisterhood between sect. Acanthochlamys and sect. Siphonochlamys as well as the phylogenetic position of C. fargesii and C. wangii, which have yet been addressed in previous phylogenetic studies. However, the monophyly of C. jacquemontii and C. kwechowensis and the distinction between C. ferox and C. ferox var. thibetica were not supported. Gene trees-species tree conflicts and cytonuclear discordance were identified, with multiple evidences supporting that hybridization/introgression, coupled with incomplete lineage sorting, have led to substantial phylogenetic incongruence in Corylus. Moreover, typical geographical clustering rather than strict monophyletic pattern in plastome phylogeny implies chloroplast capture within Corylus and offers evidence of cytoplasmic introgression. Overall, this study provides a robust phylogenomic backbone for Corylus and unravels that reticulate evolution can greatly shape taxonomic revision.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Phylogenetics and Evolution
Molecular Phylogenetics and Evolution 生物-进化生物学
CiteScore
7.50
自引率
7.30%
发文量
249
审稿时长
7.5 months
期刊介绍: Molecular Phylogenetics and Evolution is dedicated to bringing Darwin''s dream within grasp - to "have fairly true genealogical trees of each great kingdom of Nature." The journal provides a forum for molecular studies that advance our understanding of phylogeny and evolution, further the development of phylogenetically more accurate taxonomic classifications, and ultimately bring a unified classification for all the ramifying lines of life. Phylogeographic studies will be considered for publication if they offer EXCEPTIONAL theoretical or empirical advances.
期刊最新文献
Diversity, Phylogeny, and historical biogeography of the genus Coccocarpia (lichenized Ascomycota: Peltigerales) in the tropics. Study of epiphytic non-geniculate coralline algae Reveals an Evolutionarily significant Genus, Pseudoderma gen. Nov. (Lithophylloideae, Corallinophycidae). Deciphering the distribution and types of Multicopper oxidases in Basidiomycota fungi. Copepod phylogenomics supports Canuelloida as a valid order separate from Harpacticoida. Disentangling a genome-wide mosaic of conflicting phylogenetic signals in Western Rattlesnakes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1