Hongmei Li , Kai-Le Zhang , Yichuan Kou , Shanshan Xu , Xian-Ming Guo , Shi-Ying Fu , Zhiyong Li , Yue-Jiao Zhang , Xueqin Chen , Jian-Feng Li
{"title":"Resonance SERS probe based on the bifunctional molecule IR808 combined with SA test strips for highly sensitive detection of monkeypox virus","authors":"Hongmei Li , Kai-Le Zhang , Yichuan Kou , Shanshan Xu , Xian-Ming Guo , Shi-Ying Fu , Zhiyong Li , Yue-Jiao Zhang , Xueqin Chen , Jian-Feng Li","doi":"10.1016/j.saa.2025.125761","DOIUrl":null,"url":null,"abstract":"<div><div>As a zoonotic virus, highly sensitive detection of monkeypox virus is crucial for its prevention and control due to its rapid increase in cases worldwide and the extremely high risk of virus transmission. In this paper, based on the principle of antigen–antibody specific recognition, an ultrasensitive resonance Raman biosensing probe was prepared using a molecule with the bifunctionality of resonance Raman effect and capturing antibody; and with the strong affinity of the biotin-streptavidin (Bio-SA) system, Bio-antibody and SA test strips were prepared. To match the T-line of the test strip, a portable Raman instrument with a strip-shaped spot was designed. Its 0.2 mm spot width ensures full coverage of the T-line and stability of the obtained SERS spectrum of the test strip. Finally, in the pharyngeal swab system, the false positives generated by complex matrix interference were effectively reduced by utilizing the excellent hydrophobicity of S9 surfactant at a concentration of 0.5 %, ultimately achieving a detection limit of 1 pg/mL and taking less than 15 min. Experimental data shows that the SERS performance of SERRS probes is at least 2 orders of magnitude better than that of other highly sensitive molecular probes. Based on the use of bifunctional molecules and the affinity of the BiO-SA system, this approach ensures the strength of SERS signals, more efficient antibody loading, and the ability of the test strip to capture probes, and the effectiveness of surfactant S9% in suppressing false positives in throat swab systems was verified. The experiment proved that the scheme had certain reference value for the high-sensitivity POCT rapid detection of monkeypox virus based on SERS technology.</div></div>","PeriodicalId":433,"journal":{"name":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","volume":"331 ","pages":"Article 125761"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386142525000678","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
As a zoonotic virus, highly sensitive detection of monkeypox virus is crucial for its prevention and control due to its rapid increase in cases worldwide and the extremely high risk of virus transmission. In this paper, based on the principle of antigen–antibody specific recognition, an ultrasensitive resonance Raman biosensing probe was prepared using a molecule with the bifunctionality of resonance Raman effect and capturing antibody; and with the strong affinity of the biotin-streptavidin (Bio-SA) system, Bio-antibody and SA test strips were prepared. To match the T-line of the test strip, a portable Raman instrument with a strip-shaped spot was designed. Its 0.2 mm spot width ensures full coverage of the T-line and stability of the obtained SERS spectrum of the test strip. Finally, in the pharyngeal swab system, the false positives generated by complex matrix interference were effectively reduced by utilizing the excellent hydrophobicity of S9 surfactant at a concentration of 0.5 %, ultimately achieving a detection limit of 1 pg/mL and taking less than 15 min. Experimental data shows that the SERS performance of SERRS probes is at least 2 orders of magnitude better than that of other highly sensitive molecular probes. Based on the use of bifunctional molecules and the affinity of the BiO-SA system, this approach ensures the strength of SERS signals, more efficient antibody loading, and the ability of the test strip to capture probes, and the effectiveness of surfactant S9% in suppressing false positives in throat swab systems was verified. The experiment proved that the scheme had certain reference value for the high-sensitivity POCT rapid detection of monkeypox virus based on SERS technology.
期刊介绍:
Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy (SAA) is an interdisciplinary journal which spans from basic to applied aspects of optical spectroscopy in chemistry, medicine, biology, and materials science.
The journal publishes original scientific papers that feature high-quality spectroscopic data and analysis. From the broad range of optical spectroscopies, the emphasis is on electronic, vibrational or rotational spectra of molecules, rather than on spectroscopy based on magnetic moments.
Criteria for publication in SAA are novelty, uniqueness, and outstanding quality. Routine applications of spectroscopic techniques and computational methods are not appropriate.
Topics of particular interest of Spectrochimica Acta Part A include, but are not limited to:
Spectroscopy and dynamics of bioanalytical, biomedical, environmental, and atmospheric sciences,
Novel experimental techniques or instrumentation for molecular spectroscopy,
Novel theoretical and computational methods,
Novel applications in photochemistry and photobiology,
Novel interpretational approaches as well as advances in data analysis based on electronic or vibrational spectroscopy.