H. R. Stacey, M. Kaasinen, C. M. O’Riordan, J. P. McKean, D. M. Powell, F. Rizzo
{"title":"A nuclear spiral in a dusty star-forming galaxy at z = 2.78","authors":"H. R. Stacey, M. Kaasinen, C. M. O’Riordan, J. P. McKean, D. M. Powell, F. Rizzo","doi":"10.1051/0004-6361/202452518","DOIUrl":null,"url":null,"abstract":"The nuclear structure of dusty star-forming galaxies is largely unexplored but harbours critical information about their structural evolution. Here, we present long-baseline Atacama Large (sub-)Millimetre Array (ALMA) continuum observations of a gravitationally lensed dusty star-forming galaxy at <i>z<i/> = 2.78. We use a pixellated lens modelling analysis to reconstruct the rest-frame 230 μm dust emission with a mean resolution of ≈55 pc and demonstrate that the inferred source properties are robust to changes in lens modelling methodology. The central 1 kpc is characterised by an exponential profile, a dual spiral arm morphology and an apparent super-Eddington compact central starburst. We find tentative evidence for a nuclear bar in the central 300 pc. These features may indicate that secular dynamical processes play a role in accumulating a high concentration of cold gas that fuels the rapid formation of a compact stellar spheroid and black hole accretion. We propose that the high spatial resolution provided by long-baseline ALMA observations and strong gravitational lensing will give key insights into the formation mechanisms of massive galaxies.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":"20 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202452518","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The nuclear structure of dusty star-forming galaxies is largely unexplored but harbours critical information about their structural evolution. Here, we present long-baseline Atacama Large (sub-)Millimetre Array (ALMA) continuum observations of a gravitationally lensed dusty star-forming galaxy at z = 2.78. We use a pixellated lens modelling analysis to reconstruct the rest-frame 230 μm dust emission with a mean resolution of ≈55 pc and demonstrate that the inferred source properties are robust to changes in lens modelling methodology. The central 1 kpc is characterised by an exponential profile, a dual spiral arm morphology and an apparent super-Eddington compact central starburst. We find tentative evidence for a nuclear bar in the central 300 pc. These features may indicate that secular dynamical processes play a role in accumulating a high concentration of cold gas that fuels the rapid formation of a compact stellar spheroid and black hole accretion. We propose that the high spatial resolution provided by long-baseline ALMA observations and strong gravitational lensing will give key insights into the formation mechanisms of massive galaxies.
期刊介绍:
Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.