Direct and indirect effects of multiplex genome editing of F5H and FAD2 in oil crop camelina

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Plant Biotechnology Journal Pub Date : 2025-01-27 DOI:10.1111/pbi.14593
Jarst van Belle, Jan G. Schaart, Annemarie C. Dechesne, Danli Fei, Abraham Ontiveros Cisneros, Michele Serafini, Richard G.F. Visser, Eibertus N. van Loo
{"title":"Direct and indirect effects of multiplex genome editing of F5H and FAD2 in oil crop camelina","authors":"Jarst van Belle, Jan G. Schaart, Annemarie C. Dechesne, Danli Fei, Abraham Ontiveros Cisneros, Michele Serafini, Richard G.F. Visser, Eibertus N. van Loo","doi":"10.1111/pbi.14593","DOIUrl":null,"url":null,"abstract":"Mutants with simultaneous germline mutations were obtained in all three <i>F5H</i> genes and all three <i>FAD2</i> genes (one to eleven mutated alleles) in order to improve the feed value of the seed meal and the fatty acid composition of the seed oil. In mutants with multiple mutated <i>F5H</i> alleles, sinapine in seed meal was reduced by up to 100%, accompanied by a sharp reduction in the S-monolignol content of lignin without causing lodging or stem break. A lower S-lignin monomer content in stems can contribute to improved stem degradability allowing new uses of stems. Mutants in all six <i>FAD2</i> alleles showed an expected increase in MUFA from 8.7% to 74% and a reduction in PUFA from 53% to 13% in the fatty acids in seed oil. Remarkably, some full <i>FAD2</i> mutants showed normal growth and seed production and not the dwarfing phenotype reported in previous studies. The relation between germline mutation allele dosage and phenotype was influenced by the still ongoing activity of the CRISPR/Cas9 system, leading to new somatic mutations in the leaves of flowering plants. The correlations between the total mutation frequency (germline plus new somatic mutations) for <i>F5H</i> with sinapine content, and <i>FAD2</i> with fatty acid composition were higher than the correlations between germline mutation count and phenotypes. This shows the importance of quantifying both the germline mutations and somatic mutations when studying CRISPR/Cas9 effects in situations where the CRISPR/Cas9 system is not yet segregated out.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"38 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/pbi.14593","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mutants with simultaneous germline mutations were obtained in all three F5H genes and all three FAD2 genes (one to eleven mutated alleles) in order to improve the feed value of the seed meal and the fatty acid composition of the seed oil. In mutants with multiple mutated F5H alleles, sinapine in seed meal was reduced by up to 100%, accompanied by a sharp reduction in the S-monolignol content of lignin without causing lodging or stem break. A lower S-lignin monomer content in stems can contribute to improved stem degradability allowing new uses of stems. Mutants in all six FAD2 alleles showed an expected increase in MUFA from 8.7% to 74% and a reduction in PUFA from 53% to 13% in the fatty acids in seed oil. Remarkably, some full FAD2 mutants showed normal growth and seed production and not the dwarfing phenotype reported in previous studies. The relation between germline mutation allele dosage and phenotype was influenced by the still ongoing activity of the CRISPR/Cas9 system, leading to new somatic mutations in the leaves of flowering plants. The correlations between the total mutation frequency (germline plus new somatic mutations) for F5H with sinapine content, and FAD2 with fatty acid composition were higher than the correlations between germline mutation count and phenotypes. This shows the importance of quantifying both the germline mutations and somatic mutations when studying CRISPR/Cas9 effects in situations where the CRISPR/Cas9 system is not yet segregated out.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Biotechnology Journal
Plant Biotechnology Journal 生物-生物工程与应用微生物
CiteScore
20.50
自引率
2.90%
发文量
201
审稿时长
1 months
期刊介绍: Plant Biotechnology Journal aspires to publish original research and insightful reviews of high impact, authored by prominent researchers in applied plant science. The journal places a special emphasis on molecular plant sciences and their practical applications through plant biotechnology. Our goal is to establish a platform for showcasing significant advances in the field, encompassing curiosity-driven studies with potential applications, strategic research in plant biotechnology, scientific analysis of crucial issues for the beneficial utilization of plant sciences, and assessments of the performance of plant biotechnology products in practical applications.
期刊最新文献
Dissecting the molecular basis of variability for flowering time in Camelina sativa Developing glycosylase‐based T‐to‐G and C‐to‐K base editors in rice Advancements in hybrid rice production: improvements in male sterility and synthetic apomixis for sustainable agriculture Telomere-to-telomere genome assembly reveals insights into the adaptive evolution of herbivore-defense mediated by volatile terpenoids in Oenanthe javanica Rubber biosynthesis drives the biogenesis and development of rubber particles, the rubber-producing organelles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1