Haidong Lu, Fan Li, Catherine R Lesko, David S Fink, Kara E Rudolph, Michael O Harhay, Christopher T Rentsch, David A Fiellin, Gregg S Gonsalves
{"title":"Four targets: an enhanced framework for guiding causal inference from observational data","authors":"Haidong Lu, Fan Li, Catherine R Lesko, David S Fink, Kara E Rudolph, Michael O Harhay, Christopher T Rentsch, David A Fiellin, Gregg S Gonsalves","doi":"10.1093/ije/dyaf003","DOIUrl":null,"url":null,"abstract":"Observational studies play an increasingly important role in estimating causal effects of a treatment or an exposure, especially with the growing availability of routinely collected real-world data. To facilitate drawing causal inference from observational data, we introduce a conceptual framework centered around “four targets”—target estimand, target population, target trial, and target validity. We illustrate the utility of our proposed “four targets” framework with the example of buprenorphine dosing for treating opioid use disorder, explaining the rationale and process for employing the framework to guide causal thinking from observational data. The “four targets” framework is beneficial for those new to epidemiologic research, enabling them to grasp fundamental concepts and acquire the skills necessary for drawing reliable causal inferences from observational data.","PeriodicalId":14147,"journal":{"name":"International journal of epidemiology","volume":"48 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of epidemiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/ije/dyaf003","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0
Abstract
Observational studies play an increasingly important role in estimating causal effects of a treatment or an exposure, especially with the growing availability of routinely collected real-world data. To facilitate drawing causal inference from observational data, we introduce a conceptual framework centered around “four targets”—target estimand, target population, target trial, and target validity. We illustrate the utility of our proposed “four targets” framework with the example of buprenorphine dosing for treating opioid use disorder, explaining the rationale and process for employing the framework to guide causal thinking from observational data. The “four targets” framework is beneficial for those new to epidemiologic research, enabling them to grasp fundamental concepts and acquire the skills necessary for drawing reliable causal inferences from observational data.
期刊介绍:
The International Journal of Epidemiology is a vital resource for individuals seeking to stay updated on the latest advancements and emerging trends in the field of epidemiology worldwide.
The journal fosters communication among researchers, educators, and practitioners involved in the study, teaching, and application of epidemiology pertaining to both communicable and non-communicable diseases. It also includes research on health services and medical care.
Furthermore, the journal presents new methodologies in epidemiology and statistics, catering to professionals working in social and preventive medicine. Published six times a year, the International Journal of Epidemiology provides a comprehensive platform for the analysis of data.
Overall, this journal is an indispensable tool for staying informed and connected within the dynamic realm of epidemiology.