Rock Glacier Velocity: An Essential Climate Variable Quantity for Permafrost

IF 25.2 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Reviews of Geophysics Pub Date : 2025-01-26 DOI:10.1029/2024rg000847
Yan Hu, Lukas U. Arenson, Chloé Barboux, Xavier Bodin, Alessandro Cicoira, Reynald Delaloye, Isabelle Gärtner-Roer, Andreas Kääb, Andreas Kellerer-Pirklbauer, Christophe Lambiel, Lin Liu, Cécile Pellet, Line Rouyet, Philippe Schoeneich, Gernot Seier, Tazio Strozzi
{"title":"Rock Glacier Velocity: An Essential Climate Variable Quantity for Permafrost","authors":"Yan Hu, Lukas U. Arenson, Chloé Barboux, Xavier Bodin, Alessandro Cicoira, Reynald Delaloye, Isabelle Gärtner-Roer, Andreas Kääb, Andreas Kellerer-Pirklbauer, Christophe Lambiel, Lin Liu, Cécile Pellet, Line Rouyet, Philippe Schoeneich, Gernot Seier, Tazio Strozzi","doi":"10.1029/2024rg000847","DOIUrl":null,"url":null,"abstract":"Rock glaciers are distinctive debris landforms found worldwide in cold mountainous regions. They express the long-term movement of perennially frozen ground. Rock Glacier Velocity (RGV), defined as the time series of the annualized surface velocity of a rock glacier unit or a part of it, has been accepted as an Essential Climate Variable Permafrost Quantity in 2022. This review aims to highlight the relationship between rock glacier velocity and climatic factors, emphasizing the scientific relevance of interannual rock glacier velocity in generating RGV products within the context of observed rock glacier kinematics. Under global warming, rock glacier velocity exhibits widespread (multi-)decennial acceleration. This acceleration varies regionally in onset timing (from the 1950s to the 2010s) and magnitude (up to a factor of 10), and has been observed in regions such as the European Alps, High Mountain Asia, and the Andes. Despite different local conditions, a synchronous interannual velocity pattern prevails in the European Alps since the 2000s, highlighting the primary influence of climate. A common pattern is the seasonal velocity rhythm, which peaks in late summer to autumn and declines in spring. RGV assesses permafrost evolution via (multi-)decennial and interannual changes in rock glacier velocity, influenced by air temperature shifts with varying time lags and snow cover effects. Although not integrated into the RGV products, seasonal variations should be examined. This rhythmic behavior is attributed to alterations in pore water pressure influenced by air temperature, snow cover, and ground water conditions.","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"38 1","pages":""},"PeriodicalIF":25.2000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews of Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024rg000847","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Rock glaciers are distinctive debris landforms found worldwide in cold mountainous regions. They express the long-term movement of perennially frozen ground. Rock Glacier Velocity (RGV), defined as the time series of the annualized surface velocity of a rock glacier unit or a part of it, has been accepted as an Essential Climate Variable Permafrost Quantity in 2022. This review aims to highlight the relationship between rock glacier velocity and climatic factors, emphasizing the scientific relevance of interannual rock glacier velocity in generating RGV products within the context of observed rock glacier kinematics. Under global warming, rock glacier velocity exhibits widespread (multi-)decennial acceleration. This acceleration varies regionally in onset timing (from the 1950s to the 2010s) and magnitude (up to a factor of 10), and has been observed in regions such as the European Alps, High Mountain Asia, and the Andes. Despite different local conditions, a synchronous interannual velocity pattern prevails in the European Alps since the 2000s, highlighting the primary influence of climate. A common pattern is the seasonal velocity rhythm, which peaks in late summer to autumn and declines in spring. RGV assesses permafrost evolution via (multi-)decennial and interannual changes in rock glacier velocity, influenced by air temperature shifts with varying time lags and snow cover effects. Although not integrated into the RGV products, seasonal variations should be examined. This rhythmic behavior is attributed to alterations in pore water pressure influenced by air temperature, snow cover, and ground water conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Reviews of Geophysics
Reviews of Geophysics 地学-地球化学与地球物理
CiteScore
50.30
自引率
0.80%
发文量
28
审稿时长
12 months
期刊介绍: Geophysics Reviews (ROG) offers comprehensive overviews and syntheses of current research across various domains of the Earth and space sciences. Our goal is to present accessible and engaging reviews that cater to the diverse AGU community. While authorship is typically by invitation, we warmly encourage readers and potential authors to share their suggestions with our editors.
期刊最新文献
Rock Glacier Velocity: An Essential Climate Variable Quantity for Permafrost Monitoring and Modeling the Soil-Plant System Toward Understanding Soil Health The Influence of Topography on the Global Terrestrial Water Cycle The Impacts of Erosion on the Carbon Cycle The Effects of Changing Environments, Abiotic Stresses, and Management Practices on Cropland Evapotranspiration: A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1