{"title":"Modeling the collective behavior of pedestrians with the spontaneous loose leader–follower structure in public spaces","authors":"Jie Xu, Dengyu Xu, Jing Wu, Xiaowei Shi","doi":"10.1111/mice.13429","DOIUrl":null,"url":null,"abstract":"Gaining insights into pedestrian flow patterns in public spaces can greatly benefit decision-making processes related to infrastructure planning. Interestingly, even pedestrians are unfamiliar with one another, they often follow others, drawing on positive information and engaging in a spontaneous collective behavior of pedestrians. To model this collective behavior, this paper proposed a social force-based technique characterized by a loosely defined leader–follower structure. First, a complex field-based phase transfer entropy (PTE) method was applied to measure the difference in information flow between pedestrians. Setting the detecting threshold with the 3 sigma principle, the radial basis function (RBF) was utilized to identify the leader in the collective. Integrating the PTE, RBF, and social force model (SFM), a comprehensive model (PTE-RBF-SFM) was developed to simulate collective behavior. Some bidirectional pedestrian flow data, collected from Fairground Düsseldorf, were used to validate the model in a real-world setting. The results showed that the proposed model provided more realistic trajectories than benchmark models, and the spontaneous leader–follower structure was found to change over time and stable with time interval prolonging.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"34 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13429","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Gaining insights into pedestrian flow patterns in public spaces can greatly benefit decision-making processes related to infrastructure planning. Interestingly, even pedestrians are unfamiliar with one another, they often follow others, drawing on positive information and engaging in a spontaneous collective behavior of pedestrians. To model this collective behavior, this paper proposed a social force-based technique characterized by a loosely defined leader–follower structure. First, a complex field-based phase transfer entropy (PTE) method was applied to measure the difference in information flow between pedestrians. Setting the detecting threshold with the 3 sigma principle, the radial basis function (RBF) was utilized to identify the leader in the collective. Integrating the PTE, RBF, and social force model (SFM), a comprehensive model (PTE-RBF-SFM) was developed to simulate collective behavior. Some bidirectional pedestrian flow data, collected from Fairground Düsseldorf, were used to validate the model in a real-world setting. The results showed that the proposed model provided more realistic trajectories than benchmark models, and the spontaneous leader–follower structure was found to change over time and stable with time interval prolonging.
期刊介绍:
Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms.
Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.