Yongqi Yin, Xisheng Zhang, Ho Ngoc Nam, Quan Manh Phung, Kuina Yuan, Boyuan Li, Fanyue Kong, Azhar Alowasheeira, Baoning Wang, Lin Li, Yusuke Yamauchi
{"title":"Enhanced Efficiency and Stability of Tin Halide Perovskite Solar Cells Through MOF Integration","authors":"Yongqi Yin, Xisheng Zhang, Ho Ngoc Nam, Quan Manh Phung, Kuina Yuan, Boyuan Li, Fanyue Kong, Azhar Alowasheeira, Baoning Wang, Lin Li, Yusuke Yamauchi","doi":"10.1002/smll.202411346","DOIUrl":null,"url":null,"abstract":"Tin halide perovskites are promising candidates for lead-free perovskite solar cells due to their ideal bandgap and high charge-carrier mobility. However, poor crystal quality and rapid degradation in ambient conditions severely limit their stability and practical applications. This study demonstrates that incorporating UiO-66, a zirconium-based MOF, significantly enhances the performance and stability of tin halide perovskite solar cells (TPSCs). The unique porous structure and abundant carboxylate groups of UiO-66 improve the crystallinity and film quality of FASnI₃, reduce defect density, and prolong charge carrier lifetimes. Consequently, the power conversion efficiency (PCE) of UiO-66-integrated TPSCs increases from 11.43% to 12.64%, and the devices maintain over 90% of their initial PCE after 100 days in a nitrogen glovebox. These findings highlight the potential of UiO-66 in addressing the efficiency and stability challenges of tin halide perovskites.","PeriodicalId":228,"journal":{"name":"Small","volume":"38 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202411346","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Tin halide perovskites are promising candidates for lead-free perovskite solar cells due to their ideal bandgap and high charge-carrier mobility. However, poor crystal quality and rapid degradation in ambient conditions severely limit their stability and practical applications. This study demonstrates that incorporating UiO-66, a zirconium-based MOF, significantly enhances the performance and stability of tin halide perovskite solar cells (TPSCs). The unique porous structure and abundant carboxylate groups of UiO-66 improve the crystallinity and film quality of FASnI₃, reduce defect density, and prolong charge carrier lifetimes. Consequently, the power conversion efficiency (PCE) of UiO-66-integrated TPSCs increases from 11.43% to 12.64%, and the devices maintain over 90% of their initial PCE after 100 days in a nitrogen glovebox. These findings highlight the potential of UiO-66 in addressing the efficiency and stability challenges of tin halide perovskites.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.