Chunyan Zhao, Shuwen Lei, Hong Zhao, Zelin Li, Yue Miao, Chunxiu Peng, Jiashun Gong
{"title":"Theabrownin remodels the circadian rhythm disorder of intestinal microbiota induced by a high-fat diet to alleviate obesity in mice.","authors":"Chunyan Zhao, Shuwen Lei, Hong Zhao, Zelin Li, Yue Miao, Chunxiu Peng, Jiashun Gong","doi":"10.1039/d4fo05947f","DOIUrl":null,"url":null,"abstract":"<p><p>The intestinal microbiota undergoes diurnal compositional and functional oscillations within a day, which affect the metabolic homeostasis of the host and exacerbate the occurrence of obesity. TB has the effect of reducing body weight and lipid accumulation, but the mechanism of improving obesity caused by a high-fat diet based on the circadian rhythm of intestinal microorganisms has not been clarified. In this study, we used multi-omics and imaging approaches to investigate the mechanism of TB in alleviating obesity in mice based on the circadian rhythm of gut microbiota. The results showed that TB could significantly regulate the levels and rhythmic expression of serum lipid indicators (TG, TC, LDL) and serum hormones (MT, FT3, LEP, CORT). The number of intestinal microbiota colonizing the colonic epithelium underwent daily fluctuations. TB remodeled the rhythmic oscillation of gut microbes (<i>i.e.</i>, <i>Lachnospiraceae_NK4A136_group</i>, <i>Alistipes</i>, <i>etc</i>.), including the number, composition, abundance and rhythmic expression of the biogeographic localization of microbes. TB notably reduced the levels of 16 bile acids (TCA, THDCA, TCDA, GHDCA, T-α-MCA, <i>etc</i>.) and restored the balance of bile acid metabolism. It was found that TB may mitigate high-fat diet-induced obesity in mice by reshaping the circadian rhythm of the gut microbiome and regulating bile acid metabolism.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food & Function","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1039/d4fo05947f","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The intestinal microbiota undergoes diurnal compositional and functional oscillations within a day, which affect the metabolic homeostasis of the host and exacerbate the occurrence of obesity. TB has the effect of reducing body weight and lipid accumulation, but the mechanism of improving obesity caused by a high-fat diet based on the circadian rhythm of intestinal microorganisms has not been clarified. In this study, we used multi-omics and imaging approaches to investigate the mechanism of TB in alleviating obesity in mice based on the circadian rhythm of gut microbiota. The results showed that TB could significantly regulate the levels and rhythmic expression of serum lipid indicators (TG, TC, LDL) and serum hormones (MT, FT3, LEP, CORT). The number of intestinal microbiota colonizing the colonic epithelium underwent daily fluctuations. TB remodeled the rhythmic oscillation of gut microbes (i.e., Lachnospiraceae_NK4A136_group, Alistipes, etc.), including the number, composition, abundance and rhythmic expression of the biogeographic localization of microbes. TB notably reduced the levels of 16 bile acids (TCA, THDCA, TCDA, GHDCA, T-α-MCA, etc.) and restored the balance of bile acid metabolism. It was found that TB may mitigate high-fat diet-induced obesity in mice by reshaping the circadian rhythm of the gut microbiome and regulating bile acid metabolism.
期刊介绍:
Food & Function provides a unique venue for physicists, chemists, biochemists, nutritionists and other food scientists to publish work at the interface of the chemistry, physics and biology of food. The journal focuses on food and the functions of food in relation to health.