Lactobacillus extracellular vesicles alleviate alcohol-induced liver injury in mice by regulating gut microbiota and activating the Nrf-2 signaling pathway.

IF 5.1 1区 农林科学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Food & Function Pub Date : 2025-01-27 DOI:10.1039/d4fo04364b
Qianqian Jiao, Jin Liu, Lei Zhou, David Julian McClements, Wei Liu, Jun Luo, Shengfeng Peng
{"title":"<i>Lactobacillus</i> extracellular vesicles alleviate alcohol-induced liver injury in mice by regulating gut microbiota and activating the Nrf-2 signaling pathway.","authors":"Qianqian Jiao, Jin Liu, Lei Zhou, David Julian McClements, Wei Liu, Jun Luo, Shengfeng Peng","doi":"10.1039/d4fo04364b","DOIUrl":null,"url":null,"abstract":"<p><p><i>Lactobacillus</i> derived extracellular vesicles (LAB-EVs) are nanosized particles secreted from <i>Lactobacillus</i> during fermentation, and therefore exist universally in fermented foods such as yogurt, pickles, and fermented beverages. In this study, three LAB-EVs were prepared using a simple scalable method, and then their structures, compositions, and biosafety properties were characterized. The protective properties and potential mechanisms of action of the LAB-EVs against alcoholic liver disease were studied. All three LAB-EVs alleviated alcohol-induced liver injury. It was shown by reduction of liver index, histological damage, liver function impairment, inflammation, and liver oxidative status. The results showed that three LAB-EVs positively promoted the diversity of intestinal flora in mice. Additionally, the relative hepatic protein level of Nrf-2, HO-1, and CYP2E1 was also regulated by LAB-EVs. In summary, these facts suggest that the three LAB-EVs can alleviate alcohol-induced liver damage, by positively modulating the intestinal flora and activation of the Nrf-2 signaling pathway. These results may facilitate the understanding of the composition and function of <i>Lactobacillus</i> fermented food and also the development of <i>Lactobacillus</i> fermented functional food.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food & Function","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1039/d4fo04364b","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Lactobacillus derived extracellular vesicles (LAB-EVs) are nanosized particles secreted from Lactobacillus during fermentation, and therefore exist universally in fermented foods such as yogurt, pickles, and fermented beverages. In this study, three LAB-EVs were prepared using a simple scalable method, and then their structures, compositions, and biosafety properties were characterized. The protective properties and potential mechanisms of action of the LAB-EVs against alcoholic liver disease were studied. All three LAB-EVs alleviated alcohol-induced liver injury. It was shown by reduction of liver index, histological damage, liver function impairment, inflammation, and liver oxidative status. The results showed that three LAB-EVs positively promoted the diversity of intestinal flora in mice. Additionally, the relative hepatic protein level of Nrf-2, HO-1, and CYP2E1 was also regulated by LAB-EVs. In summary, these facts suggest that the three LAB-EVs can alleviate alcohol-induced liver damage, by positively modulating the intestinal flora and activation of the Nrf-2 signaling pathway. These results may facilitate the understanding of the composition and function of Lactobacillus fermented food and also the development of Lactobacillus fermented functional food.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
乳酸菌胞外囊泡通过调节肠道微生物群和激活Nrf-2信号通路减轻酒精诱导的小鼠肝损伤
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Food & Function
Food & Function BIOCHEMISTRY & MOLECULAR BIOLOGY-FOOD SCIENCE & TECHNOLOGY
CiteScore
10.10
自引率
6.60%
发文量
957
审稿时长
1.8 months
期刊介绍: Food & Function provides a unique venue for physicists, chemists, biochemists, nutritionists and other food scientists to publish work at the interface of the chemistry, physics and biology of food. The journal focuses on food and the functions of food in relation to health.
期刊最新文献
Caffeic acid stimulates migration and invasion of human trophoblast HTR-8/SVneo cells. Human milk peptide MAMP-1 alleviates necrotizing enterocolitis via inhibition of the TLR4-mediated PI3K-AKT-NF-κB signaling pathway. Induction of endotoxin tolerance in murine monocyte and macrophage cell populations - optimal LPS dose and compartment-specific reversal by β-glucan. Determination of pentacyclic triterpenes and polyphenols from table olives in colon and plasma and their chemopreventive effects on 1,2-dimethylhydrazine-induced preneoplastic lesions in rat colon. Human milk oligosaccharides 2'-fucosyllactose and 3-fucosyllactose attenuate ovalbumin-induced food allergy through immunoregulation and gut microbiota modulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1