Removal of ciprofloxacin using polymeric nanocomposites synthesized from alkylated chitosan ionic macromonomers, ionic monomers and hydrotalcite.

IF 7.7 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY International Journal of Biological Macromolecules Pub Date : 2025-04-01 Epub Date: 2025-01-24 DOI:10.1016/j.ijbiomac.2025.140303
Samir Esquivel, Martina Zuñiga, Manuel Meléndrez, Eduardo Pereira, Bruno F Urbano, Bernabé L Rivas, Daniel A Palacio
{"title":"Removal of ciprofloxacin using polymeric nanocomposites synthesized from alkylated chitosan ionic macromonomers, ionic monomers and hydrotalcite.","authors":"Samir Esquivel, Martina Zuñiga, Manuel Meléndrez, Eduardo Pereira, Bruno F Urbano, Bernabé L Rivas, Daniel A Palacio","doi":"10.1016/j.ijbiomac.2025.140303","DOIUrl":null,"url":null,"abstract":"<p><p>The contamination of water systems by antibiotics such as ciprofloxacin (CIP), which is used to treat bacterial infections, poses severe risks to environmental safety and public health. To address this issue, a novel zwitterionic polymeric nanocomposite (PNs-HTC) was developed in this study. This novel material was synthesized using alkylated chitosan ionic macromonomers, ionic monomers and combined with hydrotalcite (HTC) via in situ free radical polymerization. The incorporation of quaternary ammonium and vinyl groups into the chitosan backbone, along with varying HTC contents, considerably impacted the properties of the nanocomposite. The nanocomposite was characterized using Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, X-ray diffraction, and thermogravimetric analysis. The effectiveness of PNs-HTC in removing CIP from water was evaluated under different conditions. PNs-HTC exhibited a CIP adsorption capacity of up to 84.43 mg g<sup>-1</sup> at 318 K. Equilibrium data fitted well to the Temkin isotherm and pseudo-second-order kinetic models. The pH, ionic strength (30 % using 0.1 M NaCl), and HTC content in the nanocomposite influenced CIP adsorption, which reached a maximum of 80 % using 0.03 g of PNs-HTC. Thermodynamic studies indicated that the adsorption process was favorable, spontaneous, and endothermic and was marked by significant randomness. These findings underscore the potential of PNs-HTC as a robust material for mitigating antibiotic pollution in aquatic environments.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"140303"},"PeriodicalIF":7.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2025.140303","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The contamination of water systems by antibiotics such as ciprofloxacin (CIP), which is used to treat bacterial infections, poses severe risks to environmental safety and public health. To address this issue, a novel zwitterionic polymeric nanocomposite (PNs-HTC) was developed in this study. This novel material was synthesized using alkylated chitosan ionic macromonomers, ionic monomers and combined with hydrotalcite (HTC) via in situ free radical polymerization. The incorporation of quaternary ammonium and vinyl groups into the chitosan backbone, along with varying HTC contents, considerably impacted the properties of the nanocomposite. The nanocomposite was characterized using Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, X-ray diffraction, and thermogravimetric analysis. The effectiveness of PNs-HTC in removing CIP from water was evaluated under different conditions. PNs-HTC exhibited a CIP adsorption capacity of up to 84.43 mg g-1 at 318 K. Equilibrium data fitted well to the Temkin isotherm and pseudo-second-order kinetic models. The pH, ionic strength (30 % using 0.1 M NaCl), and HTC content in the nanocomposite influenced CIP adsorption, which reached a maximum of 80 % using 0.03 g of PNs-HTC. Thermodynamic studies indicated that the adsorption process was favorable, spontaneous, and endothermic and was marked by significant randomness. These findings underscore the potential of PNs-HTC as a robust material for mitigating antibiotic pollution in aquatic environments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用由烷基化壳聚糖离子大单体、离子单体和水滑石合成的聚合物纳米复合材料去除环丙沙星。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Biological Macromolecules
International Journal of Biological Macromolecules 生物-生化与分子生物学
CiteScore
13.70
自引率
9.80%
发文量
2728
审稿时长
64 days
期刊介绍: The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.
期刊最新文献
Recent advances in valorization of lignocellulosic waste into biochar and its functionalization for the removal of chromium ions. CEBPA as a potential hub gene for cutaneous inflammation in type 2 diabetes mellitus. Construction of environmentally stable self-adhesive conductive cellulose hydrogel for electronic skin sensor via autocatalytic fast polymerization strategy at room temperature. Effect of bioactive Rosa roxburghii Tratt fruit polysaccharide on the structure and emulsifying property of lactoferrin protein. Targeting JAK/STAT3 in glioblastoma cells using an alginate-PNIPAm molecularly imprinted hydrogel for the sustained release of ruxolitinib.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1