Edaphic factors mediate the response of nitrogen cycling and related enzymatic activities and functional genes to heavy metals: A review.

IF 6.2 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Ecotoxicology and Environmental Safety Pub Date : 2025-01-25 DOI:10.1016/j.ecoenv.2025.117766
Tracy Opande, Mengru Kong, Di Feng, YuHong Wen, Nathan Okoth, Ali Mohd Yatoo, Fatma Mohamed Ameen Khalil, Ahmed S Elrys, Lei Meng, Jinbo Zhang
{"title":"Edaphic factors mediate the response of nitrogen cycling and related enzymatic activities and functional genes to heavy metals: A review.","authors":"Tracy Opande, Mengru Kong, Di Feng, YuHong Wen, Nathan Okoth, Ali Mohd Yatoo, Fatma Mohamed Ameen Khalil, Ahmed S Elrys, Lei Meng, Jinbo Zhang","doi":"10.1016/j.ecoenv.2025.117766","DOIUrl":null,"url":null,"abstract":"<p><p>Soil nitrogen (N) transformations control N availability and plant production and pose environmental concerns when N is lost, raising issues such as soil acidification, water contamination, and climate change. Former studies suggested that soil N cycling is chiefly regulated by microbial activity; however, emerging evidence indicates that this regulation is disrupted by heavy metal (HM) contamination, which alters microbial communities and enzyme functions critical to N transformations. Environmental factors like soil organic carbon, soil texture, water content, temperature, soil pH, N fertilization, and redox status play significant roles in modulating the response of soil N cycling to HM contamination. This review examines how different HMs affect soil N processes, including N fixation, mineralization, nitrification, denitrification, dissimilatory nitrate reduction to ammonium (DNRA), and immobilization, as well as microbial activities and functional genes related to soil N transformations. The review additionally outlines the impact of HMs on environmental degradation, including the risk of soil N losses (e.g., leaching, runoff, and gaseous emissions) and depletion of soil fertility, thus threatening the sustainability of the ecosystem. The effect of edaphic factors and fertilization on soil N cycling response to HM contamination was also examined. The effect of phytoremediation, a sustainable approach to remediate HM polluted soils, on N cycling was also reviewed. Thus, this review underscores the importance of increasing research and innovative strategies to combat HM pollution's effects to enhance soil health, boost crop yields, and protect soil stability and productivity.</p>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":"290 ","pages":"117766"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology and Environmental Safety","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.ecoenv.2025.117766","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Soil nitrogen (N) transformations control N availability and plant production and pose environmental concerns when N is lost, raising issues such as soil acidification, water contamination, and climate change. Former studies suggested that soil N cycling is chiefly regulated by microbial activity; however, emerging evidence indicates that this regulation is disrupted by heavy metal (HM) contamination, which alters microbial communities and enzyme functions critical to N transformations. Environmental factors like soil organic carbon, soil texture, water content, temperature, soil pH, N fertilization, and redox status play significant roles in modulating the response of soil N cycling to HM contamination. This review examines how different HMs affect soil N processes, including N fixation, mineralization, nitrification, denitrification, dissimilatory nitrate reduction to ammonium (DNRA), and immobilization, as well as microbial activities and functional genes related to soil N transformations. The review additionally outlines the impact of HMs on environmental degradation, including the risk of soil N losses (e.g., leaching, runoff, and gaseous emissions) and depletion of soil fertility, thus threatening the sustainability of the ecosystem. The effect of edaphic factors and fertilization on soil N cycling response to HM contamination was also examined. The effect of phytoremediation, a sustainable approach to remediate HM polluted soils, on N cycling was also reviewed. Thus, this review underscores the importance of increasing research and innovative strategies to combat HM pollution's effects to enhance soil health, boost crop yields, and protect soil stability and productivity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.10
自引率
5.90%
发文量
1234
审稿时长
88 days
期刊介绍: Ecotoxicology and Environmental Safety is a multi-disciplinary journal that focuses on understanding the exposure and effects of environmental contamination on organisms including human health. The scope of the journal covers three main themes. The topics within these themes, indicated below, include (but are not limited to) the following: Ecotoxicology、Environmental Chemistry、Environmental Safety etc.
期刊最新文献
Quantifying the sources and health risks of groundwater nitrate via dual NO isotopes and Monte Carlo simulations in a developed planting-breeding area. Edaphic factors mediate the response of nitrogen cycling and related enzymatic activities and functional genes to heavy metals: A review. Multi-metal mixture exposure and cognitive function in urban older adults: The mediation effects of thyroid hormones. Prenatal exposure to bisphenol A causes reproductive damage in F1 male rabbits due to inflammation and oxidative stress. Synergistic effects of allantoin and Achyranthes japonica-biochar profoundly alleviate lead toxicity during barley growth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1