DFT study of the binary intermetallic compound NdMn2 in different polytypic phases

IF 2.1 4区 化学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Molecular Modeling Pub Date : 2025-01-27 DOI:10.1007/s00894-025-06286-y
Murad Murad, Zahid Ali, Shahid Mehmood
{"title":"DFT study of the binary intermetallic compound NdMn2 in different polytypic phases","authors":"Murad Murad,&nbsp;Zahid Ali,&nbsp;Shahid Mehmood","doi":"10.1007/s00894-025-06286-y","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><p>The structural stability, ground state magnetic order, electronic, elastic and thermoelectric properties of NdMn<sub>2</sub> in the C15, C14 and C36 polytypic phases is investigated. The magnetic phase optimization and magnetic susceptibility reveal that NdMn<sub>2</sub> is antiferromagnetic (AFM) in C36 phase; and paramagnetic (PM) in C14 and C15 phases respectively. The band profiles and electrical resistivity show the metallic nature in all these polytypic phases and reveal that the C36 phase possesses smaller resistivity. The presence of covalent bonds among Nd–Nd and Nd-Mn has been verified from the electron charge densities plots. The elastic constants calculated in different phases confirm the mechanical stability and are elastically anisotropic and incompressible in all phases. Due to large enough value of Young and Bulk moduli in C14 phase NdMn<sub>2</sub> would be suitable candidate for applications that require high strength, stiffness and durability, as well as the ability to withstand extreme environments.</p><h3>Method</h3><p>The density functional theory (DFT) is used to investigate the physical properties of understudy binary intermetallic compounds NdMn<sub>2</sub> in the C15, C14 and C36 polytypic phases.</p><p>BoltzTraP code based on Boltzmann semi-classical transport theory is used to investigate magnetic susceptibility and electrical resistivities of the understudy compounds. The elastic constants are calculated with the help of IRELAST code embedded in WIEN2k software. Linux based xmgrace and origin software are used for plotting.</p></div>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":"31 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Modeling","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00894-025-06286-y","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Context

The structural stability, ground state magnetic order, electronic, elastic and thermoelectric properties of NdMn2 in the C15, C14 and C36 polytypic phases is investigated. The magnetic phase optimization and magnetic susceptibility reveal that NdMn2 is antiferromagnetic (AFM) in C36 phase; and paramagnetic (PM) in C14 and C15 phases respectively. The band profiles and electrical resistivity show the metallic nature in all these polytypic phases and reveal that the C36 phase possesses smaller resistivity. The presence of covalent bonds among Nd–Nd and Nd-Mn has been verified from the electron charge densities plots. The elastic constants calculated in different phases confirm the mechanical stability and are elastically anisotropic and incompressible in all phases. Due to large enough value of Young and Bulk moduli in C14 phase NdMn2 would be suitable candidate for applications that require high strength, stiffness and durability, as well as the ability to withstand extreme environments.

Method

The density functional theory (DFT) is used to investigate the physical properties of understudy binary intermetallic compounds NdMn2 in the C15, C14 and C36 polytypic phases.

BoltzTraP code based on Boltzmann semi-classical transport theory is used to investigate magnetic susceptibility and electrical resistivities of the understudy compounds. The elastic constants are calculated with the help of IRELAST code embedded in WIEN2k software. Linux based xmgrace and origin software are used for plotting.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二元金属间化合物 NdMn2 在不同多型相中的 DFT 研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Molecular Modeling
Journal of Molecular Modeling 化学-化学综合
CiteScore
3.50
自引率
4.50%
发文量
362
审稿时长
2.9 months
期刊介绍: The Journal of Molecular Modeling focuses on "hardcore" modeling, publishing high-quality research and reports. Founded in 1995 as a purely electronic journal, it has adapted its format to include a full-color print edition, and adjusted its aims and scope fit the fast-changing field of molecular modeling, with a particular focus on three-dimensional modeling. Today, the journal covers all aspects of molecular modeling including life science modeling; materials modeling; new methods; and computational chemistry. Topics include computer-aided molecular design; rational drug design, de novo ligand design, receptor modeling and docking; cheminformatics, data analysis, visualization and mining; computational medicinal chemistry; homology modeling; simulation of peptides, DNA and other biopolymers; quantitative structure-activity relationships (QSAR) and ADME-modeling; modeling of biological reaction mechanisms; and combined experimental and computational studies in which calculations play a major role.
期刊最新文献
First-principles studies of the SCl2 adsorption on the doped boron phosphide monolayer Investigation of product formation in the H + H2C = C = CH reaction: a comparison of experimental and theoretical kinetics The effect of pressure on the mechanical properties of hydroxyl-terminated polybutadiene-based propellants Structure and dynamics of anacardic acid in hexane, ethanol, and carbon tetrachloride: a molecular dynamics investigation Exploring the explosive potential of 2,3-dihydrofuran derivatives as novel insensitive high-energy density materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1