Photochemical Evolution of Alanine in Association with the Martian Soil Analog Montmorillonite: Insights Derived from Experiments Conducted on the International Space Station.
Severin Wipf, Paul Mabey, Riccardo G Urso, Sebastian Wolf, Arthur Stok, Antonio J Ricco, Richard C Quinn, Andrew L Mattioda, Nykola C Jones, Søren V Hoffmann, Hervé Cottin, Didier Chaput, Pascale Ehrenfreund, Andreas Elsaesser
{"title":"Photochemical Evolution of Alanine in Association with the Martian Soil Analog Montmorillonite: Insights Derived from Experiments Conducted on the International Space Station.","authors":"Severin Wipf, Paul Mabey, Riccardo G Urso, Sebastian Wolf, Arthur Stok, Antonio J Ricco, Richard C Quinn, Andrew L Mattioda, Nykola C Jones, Søren V Hoffmann, Hervé Cottin, Didier Chaput, Pascale Ehrenfreund, Andreas Elsaesser","doi":"10.1089/ast.2024.0034","DOIUrl":null,"url":null,"abstract":"<p><p>The <i>Photochemistry on the Space Station</i> (PSS) experiment was part of the European Space Agency's <i>EXPOSE-R2</i> mission and was conducted on the International Space Station from 2014 to 2016. The PSS experiment investigated the properties of montmorillonite clay as a protective shield against degradation of organic compounds that were exposed to elevated levels of ultraviolet (UV) radiation in space. Additionally, we examined the potential for montmorillonite to catalyze UV-induced breakdown of the amino acid alanine and its potential to trap the resulting photochemical byproducts within its interlayers. We tested pure alanine thin films, alanine thin films protected from direct UV exposure by a thin cover layer of montmorillonite, and an intimate combination of the two substances forming an organoclay. The samples were exposed to space conditions for 15.5 months and then returned to Earth for detailed analysis. Concurrent ground-control experiments subjected identical samples to simulated solar light irradiation. Fourier-transform infrared (FTIR) spectroscopy quantified molecular changes by comparing spectra obtained before and after exposure for both the space and ground-control samples. To more deeply understand the photochemical processes influencing the stability of irradiated alanine molecules, we performed an additional experiment using time-resolved FTIR spectroscopy for a second set of ground samples exposed to simulated solar light. Our collective experiments reveal that montmorillonite clay exhibits a dual, configuration-dependent effect on the stability of alanine: while a thin cover layer of the clay provides UV shielding that slows degradation, an intimate mixture of clay and amino acid hastens the photochemical decomposition of alanine by promoting certain chemical reactions. This observation is important to understand the preservation of amino acids in specific extraterrestrial environments, such as Mars: cover mineral layer depths of several millimeters are required to effectively shield organics from the harmful effects of UV radiation. We also explored the role of carbon dioxide (CO<sub>2</sub>), a byproduct of alanine photolysis, as a tracer of the amino acid. CO<sub>2</sub> can be trapped within clay interlayers, particularly in clays with small interlayer ions such as sodium. Our studies emphasize the multifaceted interactions between montmorillonite clay and alanine under nonterrestrial conditions; thus, they contribute valuable insights to broader astrobiological research questions.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrobiology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1089/ast.2024.0034","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Photochemistry on the Space Station (PSS) experiment was part of the European Space Agency's EXPOSE-R2 mission and was conducted on the International Space Station from 2014 to 2016. The PSS experiment investigated the properties of montmorillonite clay as a protective shield against degradation of organic compounds that were exposed to elevated levels of ultraviolet (UV) radiation in space. Additionally, we examined the potential for montmorillonite to catalyze UV-induced breakdown of the amino acid alanine and its potential to trap the resulting photochemical byproducts within its interlayers. We tested pure alanine thin films, alanine thin films protected from direct UV exposure by a thin cover layer of montmorillonite, and an intimate combination of the two substances forming an organoclay. The samples were exposed to space conditions for 15.5 months and then returned to Earth for detailed analysis. Concurrent ground-control experiments subjected identical samples to simulated solar light irradiation. Fourier-transform infrared (FTIR) spectroscopy quantified molecular changes by comparing spectra obtained before and after exposure for both the space and ground-control samples. To more deeply understand the photochemical processes influencing the stability of irradiated alanine molecules, we performed an additional experiment using time-resolved FTIR spectroscopy for a second set of ground samples exposed to simulated solar light. Our collective experiments reveal that montmorillonite clay exhibits a dual, configuration-dependent effect on the stability of alanine: while a thin cover layer of the clay provides UV shielding that slows degradation, an intimate mixture of clay and amino acid hastens the photochemical decomposition of alanine by promoting certain chemical reactions. This observation is important to understand the preservation of amino acids in specific extraterrestrial environments, such as Mars: cover mineral layer depths of several millimeters are required to effectively shield organics from the harmful effects of UV radiation. We also explored the role of carbon dioxide (CO2), a byproduct of alanine photolysis, as a tracer of the amino acid. CO2 can be trapped within clay interlayers, particularly in clays with small interlayer ions such as sodium. Our studies emphasize the multifaceted interactions between montmorillonite clay and alanine under nonterrestrial conditions; thus, they contribute valuable insights to broader astrobiological research questions.
期刊介绍:
Astrobiology is the most-cited peer-reviewed journal dedicated to the understanding of life''s origin, evolution, and distribution in the universe, with a focus on new findings and discoveries from interplanetary exploration and laboratory research.
Astrobiology coverage includes: Astrophysics; Astropaleontology; Astroplanets; Bioastronomy; Cosmochemistry; Ecogenomics; Exobiology; Extremophiles; Geomicrobiology; Gravitational biology; Life detection technology; Meteoritics; Planetary geoscience; Planetary protection; Prebiotic chemistry; Space exploration technology; Terraforming