Instar identification and weight prediction of Ostrinia furnacalis (Guenée) larvae using machine learning.

IF 1.6 3区 农林科学 Q2 ENTOMOLOGY Bulletin of Entomological Research Pub Date : 2025-02-01 DOI:10.1017/S0007485324000932
Xiao Feng, Farman Ullah, Jiali Liu, Yunliang Ji, Sohail Abbas, Siqi Liao, Jamin Ali, Nicolas Desneux, Rizhao Chen
{"title":"Instar identification and weight prediction of <i>Ostrinia furnacalis</i> (Guenée) larvae using machine learning.","authors":"Xiao Feng, Farman Ullah, Jiali Liu, Yunliang Ji, Sohail Abbas, Siqi Liao, Jamin Ali, Nicolas Desneux, Rizhao Chen","doi":"10.1017/S0007485324000932","DOIUrl":null,"url":null,"abstract":"<p><p>The Asian corn borer, <i>Ostrinia furnacalis</i> (Guenée), emerges as a significant threat to maize cultivation, inflicting substantial damage upon the crops. Particularly, its larval stage represents a critical point characterised by significant economic consequences on maize yield. To manage the infestation of this pest effectively, timely and precise identification of its larval stages is required. Currently, the absence of techniques capable of addressing this urgent need poses a formidable challenge to agricultural practitioners. To mitigate this issue, the current study aims to establish models conducive to the identification of larval stages. Furthermore, this study aims to devise predictive models for estimating larval weights, thereby enhancing the precision and efficacy of pest management strategies. For this, 9 classification and 11 regression models were established using four feature datasets based on the following features geometry, colour, and texture. Effectiveness of the models was determined by comparing metrics such as accuracy, precision, recall, F1-score, coefficient of determination, root mean squared error, mean absolute error, and mean absolute percentage error. Furthermore, Shapley Additive exPlanations analysis was employed to analyse the importance of features. Our results revealed that for instar identification, the DecisionTreeClassifier model exhibited the best performance with an accuracy of 84%. For larval weight, the SupportVectorRegressor model performed best with <i>R</i><sup>2</sup> of 0.9742. Overall, these findings present a novel and accurate approach to identify instar and predict the weight of <i>O. furnacalis</i> larvae, offering valuable insights for the implementation of management strategies against this key pest.</p>","PeriodicalId":9370,"journal":{"name":"Bulletin of Entomological Research","volume":" ","pages":"93-104"},"PeriodicalIF":1.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Entomological Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1017/S0007485324000932","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The Asian corn borer, Ostrinia furnacalis (Guenée), emerges as a significant threat to maize cultivation, inflicting substantial damage upon the crops. Particularly, its larval stage represents a critical point characterised by significant economic consequences on maize yield. To manage the infestation of this pest effectively, timely and precise identification of its larval stages is required. Currently, the absence of techniques capable of addressing this urgent need poses a formidable challenge to agricultural practitioners. To mitigate this issue, the current study aims to establish models conducive to the identification of larval stages. Furthermore, this study aims to devise predictive models for estimating larval weights, thereby enhancing the precision and efficacy of pest management strategies. For this, 9 classification and 11 regression models were established using four feature datasets based on the following features geometry, colour, and texture. Effectiveness of the models was determined by comparing metrics such as accuracy, precision, recall, F1-score, coefficient of determination, root mean squared error, mean absolute error, and mean absolute percentage error. Furthermore, Shapley Additive exPlanations analysis was employed to analyse the importance of features. Our results revealed that for instar identification, the DecisionTreeClassifier model exhibited the best performance with an accuracy of 84%. For larval weight, the SupportVectorRegressor model performed best with R2 of 0.9742. Overall, these findings present a novel and accurate approach to identify instar and predict the weight of O. furnacalis larvae, offering valuable insights for the implementation of management strategies against this key pest.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
160
审稿时长
6-12 weeks
期刊介绍: Established in 1910, the internationally recognised Bulletin of Entomological Research aims to further global knowledge of entomology through the generalisation of research findings rather than providing more entomological exceptions. The Bulletin publishes high quality and original research papers, ''critiques'' and review articles concerning insects or other arthropods of economic importance in agriculture, forestry, stored products, biological control, medicine, animal health and natural resource management. The scope of papers addresses the biology, ecology, behaviour, physiology and systematics of individuals and populations, with a particular emphasis upon the major current and emerging pests of agriculture, horticulture and forestry, and vectors of human and animal diseases. This includes the interactions between species (plants, hosts for parasites, natural enemies and whole communities), novel methodological developments, including molecular biology, in an applied context. The Bulletin does not publish the results of pesticide testing or traditional taxonomic revisions.
期刊最新文献
Host age preference and biology of Coccygidium luteum (Hymenoptera: Braconidae), a larval parasitoid of the fall armyworm. Fitness and mating compatibility of Rachiplusia nu strains exposed to soybean expressing Cry1Ac in Argentina. Geographical distribution and genetic analysis reveal recent global invasion of whitefly, Bemisia tabaci, primarily associated with only three haplotypes. Effectiveness of the predatory mite Neoseiulus cucumeris on two-spotted spider mite and western flower thrips: A quantitative assessment. Factors affecting the impact of Popillia japonica Newman, 1841 (Coleoptera: Scarabaeidae) on grapevine in Northwestern Italy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1