Exploring Surface State and Exciplex Dominated Aggregation Induced Electrochemiluminescence of Graphene Quantum Dots Prepared Via Electrochemical Exfoliation.
{"title":"Exploring Surface State and Exciplex Dominated Aggregation Induced Electrochemiluminescence of Graphene Quantum Dots Prepared Via Electrochemical Exfoliation.","authors":"Congyang Zhang, Zhenzhong Cai, Kenneth Chu, Wai-Tung Shiu, Ping Hu, Lijia Liu, Qiao Zhang, Zhifeng Ding","doi":"10.1002/cphc.202401074","DOIUrl":null,"url":null,"abstract":"<p><p>Graphene quantum dots (GQDs) have emerged as promising materials for electrochemiluminescence (ECL) applications due to their unique optical and electronic properties. In this study, GQDs were synthesized via electrochemical exfoliation of graphite in a constant current density mode, enabling scalable production with controlled size and surface functionalization. GQDs-4 and GQDs-20, synthesized at applied current densities of 4 mA/cm2 and 20 mA/cm2 to the graphite electrode, respectively, were investigated on roles of surface states and exciplex dominated aggregation-induced emission (AIE) in their ECL performance. GQDs-4 revealed an absolute ECL quantum efficiency of up to 0.0012%. GQDs-20, with a smaller particle size, achieved an absolute ECL quantum efficiency of up to 0.03%, demonstrating high efficiency in converting electrons into photons. While GQDs-4 exhibited minor intensity in PL and ECL, they displayed a similar emission spectrum to GQDs-20 in the ECL process. This finding highlights the significant role of surface states and AIE in influencing the emission properties of GQDs, independent from core-state transitions. These results provide critical insights into the mechanisms governing GQD-based ECL and offer pathways for optimizing these materials for use in biosensing, optoelectronics, and imaging applications.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202401074"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202401074","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Graphene quantum dots (GQDs) have emerged as promising materials for electrochemiluminescence (ECL) applications due to their unique optical and electronic properties. In this study, GQDs were synthesized via electrochemical exfoliation of graphite in a constant current density mode, enabling scalable production with controlled size and surface functionalization. GQDs-4 and GQDs-20, synthesized at applied current densities of 4 mA/cm2 and 20 mA/cm2 to the graphite electrode, respectively, were investigated on roles of surface states and exciplex dominated aggregation-induced emission (AIE) in their ECL performance. GQDs-4 revealed an absolute ECL quantum efficiency of up to 0.0012%. GQDs-20, with a smaller particle size, achieved an absolute ECL quantum efficiency of up to 0.03%, demonstrating high efficiency in converting electrons into photons. While GQDs-4 exhibited minor intensity in PL and ECL, they displayed a similar emission spectrum to GQDs-20 in the ECL process. This finding highlights the significant role of surface states and AIE in influencing the emission properties of GQDs, independent from core-state transitions. These results provide critical insights into the mechanisms governing GQD-based ECL and offer pathways for optimizing these materials for use in biosensing, optoelectronics, and imaging applications.
期刊介绍:
ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.