Reproductive toxicity and transgenerational effects of co-exposure to polystyrene microplastics and arsenic in zebrafish

IF 3.9 3区 环境科学与生态学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Comparative Biochemistry and Physiology C-toxicology & Pharmacology Pub Date : 2025-01-27 DOI:10.1016/j.cbpc.2025.110134
Yuxuan Luo , Zheng Zhang , Xuewei Li , Zile Zhuang , Yihan Li , Xinya Wang , Changqing Liao , Lujia Chen , Qizhi Luo , Xuncai Chen
{"title":"Reproductive toxicity and transgenerational effects of co-exposure to polystyrene microplastics and arsenic in zebrafish","authors":"Yuxuan Luo ,&nbsp;Zheng Zhang ,&nbsp;Xuewei Li ,&nbsp;Zile Zhuang ,&nbsp;Yihan Li ,&nbsp;Xinya Wang ,&nbsp;Changqing Liao ,&nbsp;Lujia Chen ,&nbsp;Qizhi Luo ,&nbsp;Xuncai Chen","doi":"10.1016/j.cbpc.2025.110134","DOIUrl":null,"url":null,"abstract":"<div><div>Microplastics (MPs) are ubiquitous environmental pollutants that have garnered significant attention due to their small particle size, resistance to degradation and large specific surface area, which makes it easy to adsorb various pollutants, particularly heavy metals. Arsenic (As), a common metal poisons, poses significant risks due to its widespread industrial use. When MPs and As co-exist in the environment, they can exert combined toxic effects on organisms, affecting various systems, including the nervous system. However, research on the reproductive damage caused by the co-exposure to MPs and As is limited, and the toxic effects and mechanisms remain unclear. In this study, we investigated the <em>co</em>-exposure of polystyrene microplastics (PSMP) and As on female zebrafish to evaluate the reproductive toxicity and transgenerational effects. The results revealed that the combined exposure exhibited elevated reproductive toxicity, resulting in reduced gonadal indices, abnormal oocyte maturation, and disrupted sex hormone levels, as evidenced by an increased E2/T ratio. Metabolomics analyses revealed that the co-exposure to PSMP and As primarily affected pathways involved in aminoacyl-tRNA biosynthesis, sphingolipid metabolism, linoleic acid metabolism, galactose metabolism, and amino sugar and nucleotide sugar metabolism. These pathways are associated with oxidative stress, lipid synthesis, and sex hormone synthesis. Importantly, the combined exposure group exhibited more pronounced effects on offspring development compared to the alone treatment group, characterized by increased mortality rate, decreased hatching rate, and reduced heart rate. These findings provide evidence that co-exposure to MPs and As damages the reproductive system and adversely affects offspring growth and development.</div></div>","PeriodicalId":10602,"journal":{"name":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","volume":"290 ","pages":"Article 110134"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532045625000158","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Microplastics (MPs) are ubiquitous environmental pollutants that have garnered significant attention due to their small particle size, resistance to degradation and large specific surface area, which makes it easy to adsorb various pollutants, particularly heavy metals. Arsenic (As), a common metal poisons, poses significant risks due to its widespread industrial use. When MPs and As co-exist in the environment, they can exert combined toxic effects on organisms, affecting various systems, including the nervous system. However, research on the reproductive damage caused by the co-exposure to MPs and As is limited, and the toxic effects and mechanisms remain unclear. In this study, we investigated the co-exposure of polystyrene microplastics (PSMP) and As on female zebrafish to evaluate the reproductive toxicity and transgenerational effects. The results revealed that the combined exposure exhibited elevated reproductive toxicity, resulting in reduced gonadal indices, abnormal oocyte maturation, and disrupted sex hormone levels, as evidenced by an increased E2/T ratio. Metabolomics analyses revealed that the co-exposure to PSMP and As primarily affected pathways involved in aminoacyl-tRNA biosynthesis, sphingolipid metabolism, linoleic acid metabolism, galactose metabolism, and amino sugar and nucleotide sugar metabolism. These pathways are associated with oxidative stress, lipid synthesis, and sex hormone synthesis. Importantly, the combined exposure group exhibited more pronounced effects on offspring development compared to the alone treatment group, characterized by increased mortality rate, decreased hatching rate, and reduced heart rate. These findings provide evidence that co-exposure to MPs and As damages the reproductive system and adversely affects offspring growth and development.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.50
自引率
5.10%
发文量
206
审稿时长
30 days
期刊介绍: Part C: Toxicology and Pharmacology. This journal is concerned with chemical and drug action at different levels of organization, biotransformation of xenobiotics, mechanisms of toxicity, including reactive oxygen species and carcinogenesis, endocrine disruptors, natural products chemistry, and signal transduction with a molecular approach to these fields.
期刊最新文献
Beta-adrenergic blockade via atenolol negatively affects body and heart mass and renal morphology in the developing chicken (Gallus Gallus Domesticus). Early-life exposure to di(2-ethylhexyl) phthalate impairs reproduction in adult female zebrafish (Danio rerio). Synergistic toxicity of cadmium and triadimefon on the microbiota and health of Rana dybowskii tadpoles. Combined exposure effects: Multilevel impact analysis of cycloxaprid and microplastics on Penaeus vannamei. Species-specific responses to di (2-ethylhexyl) phthalate reveal activation of defense signaling pathways in California sea lion but not in human skeletal muscle cells in primary culture.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1