Mitigating cadmium contamination in soil using Biochar, sulfur-modified Biochar, and other organic amendments.

IF 3.4 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES International Journal of Phytoremediation Pub Date : 2025-01-26 DOI:10.1080/15226514.2025.2454515
Tianzhi Huang, Imran
{"title":"Mitigating cadmium contamination in soil using Biochar, sulfur-modified Biochar, and other organic amendments.","authors":"Tianzhi Huang, Imran","doi":"10.1080/15226514.2025.2454515","DOIUrl":null,"url":null,"abstract":"<p><p>Biochar is a novel approach to remediating heavy metal-contaminated soil. Using various organic amendments like phyllosilicate-minerals (PSM), compost, biochar (BC) and sulfur-modified biochar (SMB), demonstrates superior adsorption capacity and stability compared to unmodified biochar (BC). The adsorption mechanisms of SMB are identified for its potential to increase soil-pH and reduce available cadmium (Cd). The study reveals the potential of BC and SMB in immobilizing Cd in contaminated soil. SMB demonstrated the highest adsorption capacity for Cd, followed by BC, PSM, and compost, with capacities ranging from 7.47 to 17.67 mg g<sup>-1</sup>. Both BC and SMB exhibit high adsorption capacities (12.82 and 17.67 mg g<sup>-1</sup>, respectively) and low desorption percentages (4.46-6.23%) at ion strengths of 0.01 to 0.1 mol-L<sup>-1</sup> and pH levels ranging from 5 to 7. SMB showed a higher adsorption capacity (17.67 mg g<sup>-1</sup>) and lower desorption percentage (4.46-6.23%) compared to BC. The adsorption mechanism involves surface-precipitation, ion exchange, and the formation of Cd(OH)<sub>2</sub> and CdCO<sub>3</sub> precipitates, as well as interactions between Cd and organic sulfur, leading to more stable-Cd and CdHS<sup>+</sup> compounds. Adding 1% SMB increased soil pH and significantly reduced available Cd, demonstrating its potential for pollutant remediation. The study underscores the promise of SMB in providing a sustainable solution for Cd-contaminated soil remediation.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-14"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Phytoremediation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2025.2454515","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Biochar is a novel approach to remediating heavy metal-contaminated soil. Using various organic amendments like phyllosilicate-minerals (PSM), compost, biochar (BC) and sulfur-modified biochar (SMB), demonstrates superior adsorption capacity and stability compared to unmodified biochar (BC). The adsorption mechanisms of SMB are identified for its potential to increase soil-pH and reduce available cadmium (Cd). The study reveals the potential of BC and SMB in immobilizing Cd in contaminated soil. SMB demonstrated the highest adsorption capacity for Cd, followed by BC, PSM, and compost, with capacities ranging from 7.47 to 17.67 mg g-1. Both BC and SMB exhibit high adsorption capacities (12.82 and 17.67 mg g-1, respectively) and low desorption percentages (4.46-6.23%) at ion strengths of 0.01 to 0.1 mol-L-1 and pH levels ranging from 5 to 7. SMB showed a higher adsorption capacity (17.67 mg g-1) and lower desorption percentage (4.46-6.23%) compared to BC. The adsorption mechanism involves surface-precipitation, ion exchange, and the formation of Cd(OH)2 and CdCO3 precipitates, as well as interactions between Cd and organic sulfur, leading to more stable-Cd and CdHS+ compounds. Adding 1% SMB increased soil pH and significantly reduced available Cd, demonstrating its potential for pollutant remediation. The study underscores the promise of SMB in providing a sustainable solution for Cd-contaminated soil remediation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Phytoremediation
International Journal of Phytoremediation 环境科学-环境科学
CiteScore
7.60
自引率
5.40%
发文量
145
审稿时长
3.4 months
期刊介绍: The International Journal of Phytoremediation (IJP) is the first journal devoted to the publication of laboratory and field research describing the use of plant systems to solve environmental problems by enabling the remediation of soil, water, and air quality and by restoring ecosystem services in managed landscapes. Traditional phytoremediation has largely focused on soil and groundwater clean-up of hazardous contaminants. Phytotechnology expands this umbrella to include many of the natural resource management challenges we face in cities, on farms, and other landscapes more integrated with daily public activities. Wetlands that treat wastewater, rain gardens that treat stormwater, poplar tree plantings that contain pollutants, urban tree canopies that treat air pollution, and specialized plants that treat decommissioned mine sites are just a few examples of phytotechnologies.
期刊最新文献
Synergistic ecological remediation of tailings in high altitude ecologically fragile areas by ryegrass (Lolium perenne L.) and activated carbon. Exploring Cd tolerance and detoxification strategies of Arabidopsis halleri ssp. gemmifera under high cadmium exposure. Co-cropping of Bornmuellera emarginata, Lupinus albus and Imperata cylindrica: a study of metal uptake interactions and nickel phytoextraction efficiency. Effect of sludge-based biochar on the stabilization of Cd in soil: experimental and theoretical studies. Mitigating cadmium contamination in soil using Biochar, sulfur-modified Biochar, and other organic amendments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1