Targeting extracellular matrix components to attenuate microglia neuroinflammation: A study of fibulin-2 and CSPGs in a model of multiple sclerosis.

IF 2.9 4区 医学 Q3 IMMUNOLOGY Journal of neuroimmunology Pub Date : 2025-01-22 DOI:10.1016/j.jneuroim.2025.578533
Gurleen Randhawa, Maryam Mobarakabadi, Charlotte D'Mello, Marlene T Morch, Ping Zhang, Chang-Chun Ling, V Wee Yong, Samira Ghorbani
{"title":"Targeting extracellular matrix components to attenuate microglia neuroinflammation: A study of fibulin-2 and CSPGs in a model of multiple sclerosis.","authors":"Gurleen Randhawa, Maryam Mobarakabadi, Charlotte D'Mello, Marlene T Morch, Ping Zhang, Chang-Chun Ling, V Wee Yong, Samira Ghorbani","doi":"10.1016/j.jneuroim.2025.578533","DOIUrl":null,"url":null,"abstract":"<p><p>The extracellular matrix (ECM) plays an important role in the central nervous system (CNS), shaping tissue structure and functions as well as contributing to the pathology of chronic diseases such as multiple sclerosis (MS). ECM components, including fibulin-2 (FBLN2) and chondroitin sulfate proteoglycans (CSPGs), may impact neuroinflammation and remyelination. We investigated the capacity of FBLN2 to modulate immune responses and evaluated its interaction with CSPGs in experimental autoimmune encephalomyelitis (EAE), a common model for MS. We show that FBLN2 deficiency in EAE mice reduced microglial pro-inflammatory activity, while effects on monocyte-derived macrophages and border-associated macrophages were less pronounced. Targeting FBLN2 and CSPGs individually, using FBLN2<sup>-/-</sup> mice and the CSPG-synthesis inhibitor difluorosamine (DIF), respectively, enhanced recovery of disability and reduced neuroinflammation in EAE mice. However, their combined targeting did not result in additive therapeutic effects beyond either alone. This study underscores the complex regulatory roles of ECM components on neuroinflammation and provides insights into potential therapeutic strategies for neuroinflammatory diseases.</p>","PeriodicalId":16671,"journal":{"name":"Journal of neuroimmunology","volume":"400 ","pages":"578533"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neuroimmunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jneuroim.2025.578533","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The extracellular matrix (ECM) plays an important role in the central nervous system (CNS), shaping tissue structure and functions as well as contributing to the pathology of chronic diseases such as multiple sclerosis (MS). ECM components, including fibulin-2 (FBLN2) and chondroitin sulfate proteoglycans (CSPGs), may impact neuroinflammation and remyelination. We investigated the capacity of FBLN2 to modulate immune responses and evaluated its interaction with CSPGs in experimental autoimmune encephalomyelitis (EAE), a common model for MS. We show that FBLN2 deficiency in EAE mice reduced microglial pro-inflammatory activity, while effects on monocyte-derived macrophages and border-associated macrophages were less pronounced. Targeting FBLN2 and CSPGs individually, using FBLN2-/- mice and the CSPG-synthesis inhibitor difluorosamine (DIF), respectively, enhanced recovery of disability and reduced neuroinflammation in EAE mice. However, their combined targeting did not result in additive therapeutic effects beyond either alone. This study underscores the complex regulatory roles of ECM components on neuroinflammation and provides insights into potential therapeutic strategies for neuroinflammatory diseases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of neuroimmunology
Journal of neuroimmunology 医学-免疫学
CiteScore
6.10
自引率
3.00%
发文量
154
审稿时长
37 days
期刊介绍: The Journal of Neuroimmunology affords a forum for the publication of works applying immunologic methodology to the furtherance of the neurological sciences. Studies on all branches of the neurosciences, particularly fundamental and applied neurobiology, neurology, neuropathology, neurochemistry, neurovirology, neuroendocrinology, neuromuscular research, neuropharmacology and psychology, which involve either immunologic methodology (e.g. immunocytochemistry) or fundamental immunology (e.g. antibody and lymphocyte assays), are considered for publication.
期刊最新文献
Morphine's role in macrophage polarization: Exploring M1 and M2 dynamics and disease susceptibility. Targeting extracellular matrix components to attenuate microglia neuroinflammation: A study of fibulin-2 and CSPGs in a model of multiple sclerosis. Serum NfL predicts outcome and secondary autoimmunity in herpes-simplex encephalitis. Balo concentric sclerosis, an emerging variant of multiple sclerosis: A case-series and literature review. Characterization of serum and brain cytokine levels following prolonged binge-like methamphetamine self-administration and cued methamphetamine seeking.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1