Tobias Wech, Oliver Schad, Simon Sauer, Jonas Kleineisel, Nils Petri, Peter Nordbeck, Thorsten A Bley, Bettina Baeßler, Bernhard Petritsch, Julius F Heidenreich
{"title":"Joint image reconstruction and segmentation of real-time cardiac MRI in free-breathing using a model based on disentangled representation learning.","authors":"Tobias Wech, Oliver Schad, Simon Sauer, Jonas Kleineisel, Nils Petri, Peter Nordbeck, Thorsten A Bley, Bettina Baeßler, Bernhard Petritsch, Julius F Heidenreich","doi":"10.1016/j.jocmr.2025.101844","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To investigate image quality and agreement of derived cardiac function parameters in a novel joint image reconstruction and segmentation approach based on disentangled representation learning, enabling real-time cardiac cine imaging during free-breathing.</p><p><strong>Methods: </strong>A multi-tasking neural network architecture, incorporating disentangled representation learning, was trained using simulated examinations based on data from a public repository along with MR scans specifically acquired for model development. An exploratory feasibility study evaluated the method on undersampled real-time acquisitions using an in-house developed spiral bSSFP pulse sequence in eight healthy participants and five patients with intermittent atrial fibrillation. Images and predicted LV segmentations were compared to the reference standard of ECG-gated segmented Cartesian cine with repeated breath-holds and corresponding manual segmentation.</p><p><strong>Results: </strong>On a 5-point Likert scale, image quality of the real-time breath-hold approach and Cartesian cine was comparable in healthy participants (RT-BH: 1.99 ±.98, Cartesian: 1.94 ±.86, p=.052), but slightly inferior in free-breathing (RT-FB: 2.40 ±.98, p<.001). In patients with arrhythmia, both real-time approaches demonstrated favourable image quality (RT-BH: 2.10 ± 1.28, p<.001, RT-FB: 2.40 ± 1.13, p<.01, Cartesian: 2.68 ± 1.13). Intra-observer reliability was good (ICC=.77,95%-confidence interval [.75,.79], p<.001). In functional analysis, a positive bias was observed for ejection fractions derived from the proposed model compared to the clinical reference standard (RT-BH mean: 58.5 ± 5.6%, bias: +3.47%, 95%-confidence interval [-.86, 7.79%], RT-FB mean: 57.9 ± 10.6%, bias: +1.45%, [-3.02, 5.91%], Cartesian mean: 54.9 ± 6.7%).</p><p><strong>Conclusion: </strong>The introduced real-time MR imaging technique enables high-quality cardiac cine data acquisitions in 1-2minutes, eliminating the need for ECG gating and breath-holds. This approach offers a promising alternative to the current clinical practice of segmented acquisition, with shorter scan times, improved patient comfort, and increased robustness to arrhythmia and patient non-compliance.</p>","PeriodicalId":15221,"journal":{"name":"Journal of Cardiovascular Magnetic Resonance","volume":" ","pages":"101844"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Magnetic Resonance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jocmr.2025.101844","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To investigate image quality and agreement of derived cardiac function parameters in a novel joint image reconstruction and segmentation approach based on disentangled representation learning, enabling real-time cardiac cine imaging during free-breathing.
Methods: A multi-tasking neural network architecture, incorporating disentangled representation learning, was trained using simulated examinations based on data from a public repository along with MR scans specifically acquired for model development. An exploratory feasibility study evaluated the method on undersampled real-time acquisitions using an in-house developed spiral bSSFP pulse sequence in eight healthy participants and five patients with intermittent atrial fibrillation. Images and predicted LV segmentations were compared to the reference standard of ECG-gated segmented Cartesian cine with repeated breath-holds and corresponding manual segmentation.
Results: On a 5-point Likert scale, image quality of the real-time breath-hold approach and Cartesian cine was comparable in healthy participants (RT-BH: 1.99 ±.98, Cartesian: 1.94 ±.86, p=.052), but slightly inferior in free-breathing (RT-FB: 2.40 ±.98, p<.001). In patients with arrhythmia, both real-time approaches demonstrated favourable image quality (RT-BH: 2.10 ± 1.28, p<.001, RT-FB: 2.40 ± 1.13, p<.01, Cartesian: 2.68 ± 1.13). Intra-observer reliability was good (ICC=.77,95%-confidence interval [.75,.79], p<.001). In functional analysis, a positive bias was observed for ejection fractions derived from the proposed model compared to the clinical reference standard (RT-BH mean: 58.5 ± 5.6%, bias: +3.47%, 95%-confidence interval [-.86, 7.79%], RT-FB mean: 57.9 ± 10.6%, bias: +1.45%, [-3.02, 5.91%], Cartesian mean: 54.9 ± 6.7%).
Conclusion: The introduced real-time MR imaging technique enables high-quality cardiac cine data acquisitions in 1-2minutes, eliminating the need for ECG gating and breath-holds. This approach offers a promising alternative to the current clinical practice of segmented acquisition, with shorter scan times, improved patient comfort, and increased robustness to arrhythmia and patient non-compliance.
期刊介绍:
Journal of Cardiovascular Magnetic Resonance (JCMR) publishes high-quality articles on all aspects of basic, translational and clinical research on the design, development, manufacture, and evaluation of cardiovascular magnetic resonance (CMR) methods applied to the cardiovascular system. Topical areas include, but are not limited to:
New applications of magnetic resonance to improve the diagnostic strategies, risk stratification, characterization and management of diseases affecting the cardiovascular system.
New methods to enhance or accelerate image acquisition and data analysis.
Results of multicenter, or larger single-center studies that provide insight into the utility of CMR.
Basic biological perceptions derived by CMR methods.