Corrigendum: solution and solubility of H atoms at the W/Cu interface (2024J. Phys.: Condens. Matter 36 465001).

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Journal of Physics: Condensed Matter Pub Date : 2025-01-27 DOI:10.1088/1361-648X/ada7b7
Y Silva-Solís, J Denis, E A Hodille, Y Ferro
{"title":"Corrigendum: solution and solubility of H atoms at the W/Cu interface (2024<i>J. Phys.: Condens. Matter</i> 36 465001).","authors":"Y Silva-Solís, J Denis, E A Hodille, Y Ferro","doi":"10.1088/1361-648X/ada7b7","DOIUrl":null,"url":null,"abstract":"<p><p>Metallic interfaces are locations where hydrogen (H) is expected to segregate and lead to the formation and stabilization of defects. This work focuses on the tungsten/copper (W/Cu) interface built according to theWbcc(001)/Cuhcp(112¯0)orientation. H behavior is subsequently determined at the interface and in its vicinity with electronic structure calculations based on the density functional theory. The electronic and vibrational properties determined in this way followed a thermodynamic treatment to deliver the solubility of H as a function of the temperature and chemical potential. The 96 interstitial positions we investigated reveal that H predominantly occupies the octahedral (Oh) sites in the copper network. Reversely, H exclusively occupies the tetrahedral (Td) sites in the tungsten network. The solubility of H is higher in the interface plane where both octahedral and tetrahedral sites are occupied. Despite this work is a first step toward kinetic modeling of hydrogen transport across the W/Cu interface, we conclude that theWbcc(001)/Cuhcp(112¯0)would behave like a sink where hydrogen isotopes could accumulate.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":"37 12","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ada7b7","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Metallic interfaces are locations where hydrogen (H) is expected to segregate and lead to the formation and stabilization of defects. This work focuses on the tungsten/copper (W/Cu) interface built according to theWbcc(001)/Cuhcp(112¯0)orientation. H behavior is subsequently determined at the interface and in its vicinity with electronic structure calculations based on the density functional theory. The electronic and vibrational properties determined in this way followed a thermodynamic treatment to deliver the solubility of H as a function of the temperature and chemical potential. The 96 interstitial positions we investigated reveal that H predominantly occupies the octahedral (Oh) sites in the copper network. Reversely, H exclusively occupies the tetrahedral (Td) sites in the tungsten network. The solubility of H is higher in the interface plane where both octahedral and tetrahedral sites are occupied. Despite this work is a first step toward kinetic modeling of hydrogen transport across the W/Cu interface, we conclude that theWbcc(001)/Cuhcp(112¯0)would behave like a sink where hydrogen isotopes could accumulate.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
期刊最新文献
Constructing topological insulator-ferromagnet heterojunctions of Bi2Se3/ Fe3GeTe2 and Bi2Te3/ Fe3GaTe2. Emergent symmetries in prethermal phases of periodically driven quantum systems. Anomalous pumping in the non-Hermitian Rice-Mele model. The efficient method of lattice dynamics calculation: Monte Carlo integration with importance sampling. Tuning Magnetism in Ising-type van der Waals Magnet FePS3 by Lithium Intercalation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1