Herbicide glyphosate efficiently inhibits growth of pathogenic Prototheca algae species, suggesting the presence of novel pathways for the development of anti-algal drugs.

IF 3.7 2区 生物学 Q2 MICROBIOLOGY Microbiology spectrum Pub Date : 2025-03-04 Epub Date: 2025-01-27 DOI:10.1128/spectrum.02343-24
Olga Makarova, Diana Steinke, Uwe Roesler
{"title":"Herbicide glyphosate efficiently inhibits growth of pathogenic <i>Prototheca</i> algae species, suggesting the presence of novel pathways for the development of anti-algal drugs.","authors":"Olga Makarova, Diana Steinke, Uwe Roesler","doi":"10.1128/spectrum.02343-24","DOIUrl":null,"url":null,"abstract":"<p><p><i>Prototheca</i> are ubiquitous algae and occasional pathogens of humans and animals. While rare, the infection is often fatal and treatment options are limited to antifungals with low efficiency. Here, using growth curve assays, we demonstrate that five pathogenic species of <i>Prototheca</i> (<i>P. blaschkeae, P. wickerhamii, P. cutis, P. ciferrii, P. bovis</i>) were fully inhibited by 50-100 μg/mL of herbicide glyphosate, suggesting novel pathways that can be considered for anti-algal drug development.IMPORTANCE<i>Prototheca</i> are algae frequently found in the environment that occasionally cause infections in humans and animals. Although these infections are rare, they are often deadly for immunocompromised patients. Considering the rising ambient temperatures that promote algal bloom and a growing number of immunocompromised patients globally, such cases are likely to increase and will require efficient medications. Currently, the treatment is limited to antifungals that affect algal and animal membranes alike at concentrations close to toxic. Here, we hypothesized that targeting a pathway that is present in plants but not animals may be a new approach to the development of novel anti-algal compounds with high efficiency and lower toxicity. In this proof-of-principle study, we found that herbicide glyphosate, which targets the shikimate pathway found in plants but not in animals, efficiently inhibits all five tested pathogenic <i>Prototheca</i>, suggesting that the shikimate pathway may be a promising target for anti-algal drug development.</p>","PeriodicalId":18670,"journal":{"name":"Microbiology spectrum","volume":" ","pages":"e0234324"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11878087/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology spectrum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/spectrum.02343-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Prototheca are ubiquitous algae and occasional pathogens of humans and animals. While rare, the infection is often fatal and treatment options are limited to antifungals with low efficiency. Here, using growth curve assays, we demonstrate that five pathogenic species of Prototheca (P. blaschkeae, P. wickerhamii, P. cutis, P. ciferrii, P. bovis) were fully inhibited by 50-100 μg/mL of herbicide glyphosate, suggesting novel pathways that can be considered for anti-algal drug development.IMPORTANCEPrototheca are algae frequently found in the environment that occasionally cause infections in humans and animals. Although these infections are rare, they are often deadly for immunocompromised patients. Considering the rising ambient temperatures that promote algal bloom and a growing number of immunocompromised patients globally, such cases are likely to increase and will require efficient medications. Currently, the treatment is limited to antifungals that affect algal and animal membranes alike at concentrations close to toxic. Here, we hypothesized that targeting a pathway that is present in plants but not animals may be a new approach to the development of novel anti-algal compounds with high efficiency and lower toxicity. In this proof-of-principle study, we found that herbicide glyphosate, which targets the shikimate pathway found in plants but not in animals, efficiently inhibits all five tested pathogenic Prototheca, suggesting that the shikimate pathway may be a promising target for anti-algal drug development.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Microbiology spectrum
Microbiology spectrum Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
3.20
自引率
5.40%
发文量
1800
期刊介绍: Microbiology Spectrum publishes commissioned review articles on topics in microbiology representing ten content areas: Archaea; Food Microbiology; Bacterial Genetics, Cell Biology, and Physiology; Clinical Microbiology; Environmental Microbiology and Ecology; Eukaryotic Microbes; Genomics, Computational, and Synthetic Microbiology; Immunology; Pathogenesis; and Virology. Reviews are interrelated, with each review linking to other related content. A large board of Microbiology Spectrum editors aids in the development of topics for potential reviews and in the identification of an editor, or editors, who shepherd each collection.
期刊最新文献
A nomogram prediction model for embryo implantation outcomes based on the cervical microbiota of the infertile patients during IVF-FET. Multi-omics analysis of the mechanism of alfalfa and wheat-induced rumen flatulence in Xizang sheep. Differential effects of pine wilt disease on root endosphere, rhizosphere, and soil microbiome of Korean white pine. Diversity in chemical subunits and linkages: a key molecular determinant of microbial richness, microbiota interactions, and substrate utilization. Rapid detection of β-lactamase activity using the rapid Amp NP test.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1