{"title":"Multi-omics analysis of the mechanism of alfalfa and wheat-induced rumen flatulence in Xizang sheep.","authors":"Jing Wu, Xiaoming Zhang, Khan Ayesha, Shahzad Khuram, Jianzhao Cui, Gaofu Wang, Zhaxi Yangzong, Mingyan Shi, Xunping Jiang, Long Li, Guiqiong Liu, Wangsheng Zhao, Tianzeng Song","doi":"10.1128/spectrum.03268-24","DOIUrl":null,"url":null,"abstract":"<p><p>Rumen flatulence is a diet-related rumen disease in ruminants. This study induced a rumen flatulence model in Xizang sheep using alfalfa (HRF) and wheatgrass (MRF). The aim was to understand the rumen microbiota diversity in healthy and pathological states, host-microbiota interactions, and the molecular mechanisms of rumen flatulence. Results showed that the pH in the HRF and MRF groups was lower than that in the natural grass group (LRF). SCFA concentrations varied between groups: in HRF, 2-BA and CA increased; in MRF, 4-MVA and 5-MCA rose. Microbial analysis indicated that the alpha- and beta-diversity of HRF and MRF groups were lower than LRF's, with different microbial compositions. Transcriptome analysis revealed many differentially expressed genes (DEGs). Compared to MRF, HRF had 348 upregulated and 511 downregulated DEGs. Versus LRF, MRF had 201 upregulated and 185 downregulated DEGs, while HRF had 128 upregulated and 238 downregulated DEGs. Spearman's correlation analysis showed that there was a positive correlation between <i>Butyrivibrio</i>, <i>Quinella,</i> and specific genes. These findings reveal the potential mechanism of rumen flatulence in Xizang sheep and provide new insights into the prevention and treatment of the disease.IMPORTANCEThe research used a high-protein diet to induce a model to understand the diversity of rumen microbiota and its interaction with the host, as well as exploring the molecular mechanisms of rumen flatulence.</p>","PeriodicalId":18670,"journal":{"name":"Microbiology spectrum","volume":" ","pages":"e0326824"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology spectrum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/spectrum.03268-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Rumen flatulence is a diet-related rumen disease in ruminants. This study induced a rumen flatulence model in Xizang sheep using alfalfa (HRF) and wheatgrass (MRF). The aim was to understand the rumen microbiota diversity in healthy and pathological states, host-microbiota interactions, and the molecular mechanisms of rumen flatulence. Results showed that the pH in the HRF and MRF groups was lower than that in the natural grass group (LRF). SCFA concentrations varied between groups: in HRF, 2-BA and CA increased; in MRF, 4-MVA and 5-MCA rose. Microbial analysis indicated that the alpha- and beta-diversity of HRF and MRF groups were lower than LRF's, with different microbial compositions. Transcriptome analysis revealed many differentially expressed genes (DEGs). Compared to MRF, HRF had 348 upregulated and 511 downregulated DEGs. Versus LRF, MRF had 201 upregulated and 185 downregulated DEGs, while HRF had 128 upregulated and 238 downregulated DEGs. Spearman's correlation analysis showed that there was a positive correlation between Butyrivibrio, Quinella, and specific genes. These findings reveal the potential mechanism of rumen flatulence in Xizang sheep and provide new insights into the prevention and treatment of the disease.IMPORTANCEThe research used a high-protein diet to induce a model to understand the diversity of rumen microbiota and its interaction with the host, as well as exploring the molecular mechanisms of rumen flatulence.
期刊介绍:
Microbiology Spectrum publishes commissioned review articles on topics in microbiology representing ten content areas: Archaea; Food Microbiology; Bacterial Genetics, Cell Biology, and Physiology; Clinical Microbiology; Environmental Microbiology and Ecology; Eukaryotic Microbes; Genomics, Computational, and Synthetic Microbiology; Immunology; Pathogenesis; and Virology. Reviews are interrelated, with each review linking to other related content. A large board of Microbiology Spectrum editors aids in the development of topics for potential reviews and in the identification of an editor, or editors, who shepherd each collection.