Dyandevi Mathure, Sejal Bhandare, Dipanjan Karati, Mohammad Adnan, Dileep Kumar
{"title":"Unraveling the Mysteries of Brain Cancer from Diagnosis to Treatment.","authors":"Dyandevi Mathure, Sejal Bhandare, Dipanjan Karati, Mohammad Adnan, Dileep Kumar","doi":"10.2174/0122117385331332241226101149","DOIUrl":null,"url":null,"abstract":"<p><p>Even with recent advancements in surgery and multimodal adjuvant therapy, brain cancer treatment is still difficult. The blood-brain barrier and the potentially deadly medications' nonspecificity have made pharmacological treatment for brain cancer particularly ineffective. The nanoparticle has surfaced as a viable brain delivery vector that can solve the issues with existing approaches. Furthermore, it is possible to integrate many functions into a single nanoplatform to enable tumor-specific diagnosis, therapy, and follow-up observation. Conventional technology does not allow for such multitasking. Recent developments in brain cancer treatment and detection using nanoparticles are discussed in this study. The benefits of delivery via nanoparticles are discussed, along with the kinds of nanoparticle systems being studied and their potential uses.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0122117385331332241226101149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
Even with recent advancements in surgery and multimodal adjuvant therapy, brain cancer treatment is still difficult. The blood-brain barrier and the potentially deadly medications' nonspecificity have made pharmacological treatment for brain cancer particularly ineffective. The nanoparticle has surfaced as a viable brain delivery vector that can solve the issues with existing approaches. Furthermore, it is possible to integrate many functions into a single nanoplatform to enable tumor-specific diagnosis, therapy, and follow-up observation. Conventional technology does not allow for such multitasking. Recent developments in brain cancer treatment and detection using nanoparticles are discussed in this study. The benefits of delivery via nanoparticles are discussed, along with the kinds of nanoparticle systems being studied and their potential uses.
期刊介绍:
Pharmaceutical Nanotechnology publishes original manuscripts, full-length/mini reviews, thematic issues, rapid technical notes and commentaries that provide insights into the synthesis, characterisation and pharmaceutical (or diagnostic) application of materials at the nanoscale. The nanoscale is defined as a size range of below 1 µm. Scientific findings related to micro and macro systems with functionality residing within features defined at the nanoscale are also within the scope of the journal. Manuscripts detailing the synthesis, exhaustive characterisation, biological evaluation, clinical testing and/ or toxicological assessment of nanomaterials are of particular interest to the journal’s readership. Articles should be self contained, centred around a well founded hypothesis and should aim to showcase the pharmaceutical/ diagnostic implications of the nanotechnology approach. Manuscripts should aim, wherever possible, to demonstrate the in vivo impact of any nanotechnological intervention. As reducing a material to the nanoscale is capable of fundamentally altering the material’s properties, the journal’s readership is particularly interested in new characterisation techniques and the advanced properties that originate from this size reduction. Both bottom up and top down approaches to the realisation of nanomaterials lie within the scope of the journal.