Physical forces supporting hyphal growth.

IF 2.4 3区 生物学 Q3 GENETICS & HEREDITY Fungal Genetics and Biology Pub Date : 2025-01-24 DOI:10.1016/j.fgb.2025.103961
Nicholas P Money
{"title":"Physical forces supporting hyphal growth.","authors":"Nicholas P Money","doi":"10.1016/j.fgb.2025.103961","DOIUrl":null,"url":null,"abstract":"<p><p>Hyphae are viscoelastic tubes whose internal pressure pushes the cell membrane against the inner surface of the cell wall. Catalytic yielding of the wall allows this turgor to force its polymers apart as new materials are added to the surface of the growing tip. Turgor drops slightly as the wall expands, creating a pressure gradient that causes the cytoplasm to flow toward the tip. These physiological processes affect the rate of extension of the hypha and determine the magnitude of the force that it uses for invasive growth. This paper provides an overview of the experimental basis for this description of hyphal mechanics and explains the wider significance of biophysical studies on fungi and water molds.</p>","PeriodicalId":55135,"journal":{"name":"Fungal Genetics and Biology","volume":" ","pages":"103961"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal Genetics and Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.fgb.2025.103961","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Hyphae are viscoelastic tubes whose internal pressure pushes the cell membrane against the inner surface of the cell wall. Catalytic yielding of the wall allows this turgor to force its polymers apart as new materials are added to the surface of the growing tip. Turgor drops slightly as the wall expands, creating a pressure gradient that causes the cytoplasm to flow toward the tip. These physiological processes affect the rate of extension of the hypha and determine the magnitude of the force that it uses for invasive growth. This paper provides an overview of the experimental basis for this description of hyphal mechanics and explains the wider significance of biophysical studies on fungi and water molds.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Fungal Genetics and Biology
Fungal Genetics and Biology 生物-遗传学
CiteScore
6.20
自引率
3.30%
发文量
66
审稿时长
85 days
期刊介绍: Fungal Genetics and Biology, formerly known as Experimental Mycology, publishes experimental investigations of fungi and their traditional allies that relate structure and function to growth, reproduction, morphogenesis, and differentiation. This journal especially welcomes studies of gene organization and expression and of developmental processes at the cellular, subcellular, and molecular levels. The journal also includes suitable experimental inquiries into fungal cytology, biochemistry, physiology, genetics, and phylogeny. Fungal Genetics and Biology publishes basic research conducted by mycologists, cell biologists, biochemists, geneticists, and molecular biologists. Research Areas include: • Biochemistry • Cytology • Developmental biology • Evolutionary biology • Genetics • Molecular biology • Phylogeny • Physiology.
期刊最新文献
Physical forces supporting hyphal growth. Global transcriptome changes during growth of a novel Penicillium coffeae isolate on the wheat stripe rust fungus, Puccinia striiformis f. sp. tritici. The sensor protein VdSLN1 is involved in regulating melanin biosynthesis and pathogenicity via MAPK pathway in Verticillium dahliae. Zymocin-like killer toxin gene clusters in the nuclear genomes of filamentous fungi. Separation of life stages within anaerobic fungi (Neocallimastigomycota) highlights differences in global transcription and metabolism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1