Fungal lignocellulolytic enzymes: an in silico and full factorial design approach.

IF 4 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY World journal of microbiology & biotechnology Pub Date : 2025-01-27 DOI:10.1007/s11274-024-04241-2
Esteffany de Souza Candeo, Fabiano Bisinella Scheufele, Aline de Cassia Campos Pena, Gabriel Dequigiovanni, Giani Andrea Linde, Gerardo Mata, Nelson Barros Colauto, Patricia Dayane Carvalho Schaker
{"title":"Fungal lignocellulolytic enzymes: an in silico and full factorial design approach.","authors":"Esteffany de Souza Candeo, Fabiano Bisinella Scheufele, Aline de Cassia Campos Pena, Gabriel Dequigiovanni, Giani Andrea Linde, Gerardo Mata, Nelson Barros Colauto, Patricia Dayane Carvalho Schaker","doi":"10.1007/s11274-024-04241-2","DOIUrl":null,"url":null,"abstract":"<p><p>Efficient degradation of lignocellulosic biomass is key for the production of value-added products, contributing to sustainable and renewable solutions. This study employs a two-step approach to evaluate lignocellulolytic enzymes of Ceratocystis paradoxa, Colletotrichum falcatum, and Sporisorium scitamineum. First, an in silico genomic analysis was conducted to predict the potential enzyme groups produced by these fungi. Second, a 2³ full factorial design of solid-state cultivation was employed to investigate the cultivation conditions that optimize enzyme activity. In silico analysis of phytopathogen genomes identified proteins with the potential for biomass degradation. Cellulase and phenoloxidase activities were assessed in culture medium and solid-state cultivation. A 2³ full factorial design was employed for solid-state cultivation to evaluate the cellulose, endoglucanase, and laccase activities. In silico analysis shows that C. falcatum has the most diverse enzyme set for lignocellulosic biomass degradation. In vitro assays corroborate this, demonstrating that C. falcatum produces the highest enzyme quantities, except for cellulase, where C. paradoxa outperforms it. Both C. paradoxa and C. falcatum exhibit cellulase and phenoloxidase activities, but only C. falcatum shows laccase activity. Most favorable enzyme production in solid-state cultivation occurred with 85-95 g 100 g<sup>- 1</sup> bagasse moisture and 5 g 100 g<sup>- 1</sup> yeast extract, with four-day cultivation period needed for cellulase and endoglucanase in C. paradoxa and 12 days for endoglucanase and laccase in C. falcatum. The in silico and in vitro assays demonstrated that C. falcatum can produce a diverse enzyme set, including laccase, cellulase, and endoglucanase, making it a promising candidate for enzymatic industrial applications.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"41 2","pages":"50"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of microbiology & biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11274-024-04241-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient degradation of lignocellulosic biomass is key for the production of value-added products, contributing to sustainable and renewable solutions. This study employs a two-step approach to evaluate lignocellulolytic enzymes of Ceratocystis paradoxa, Colletotrichum falcatum, and Sporisorium scitamineum. First, an in silico genomic analysis was conducted to predict the potential enzyme groups produced by these fungi. Second, a 2³ full factorial design of solid-state cultivation was employed to investigate the cultivation conditions that optimize enzyme activity. In silico analysis of phytopathogen genomes identified proteins with the potential for biomass degradation. Cellulase and phenoloxidase activities were assessed in culture medium and solid-state cultivation. A 2³ full factorial design was employed for solid-state cultivation to evaluate the cellulose, endoglucanase, and laccase activities. In silico analysis shows that C. falcatum has the most diverse enzyme set for lignocellulosic biomass degradation. In vitro assays corroborate this, demonstrating that C. falcatum produces the highest enzyme quantities, except for cellulase, where C. paradoxa outperforms it. Both C. paradoxa and C. falcatum exhibit cellulase and phenoloxidase activities, but only C. falcatum shows laccase activity. Most favorable enzyme production in solid-state cultivation occurred with 85-95 g 100 g- 1 bagasse moisture and 5 g 100 g- 1 yeast extract, with four-day cultivation period needed for cellulase and endoglucanase in C. paradoxa and 12 days for endoglucanase and laccase in C. falcatum. The in silico and in vitro assays demonstrated that C. falcatum can produce a diverse enzyme set, including laccase, cellulase, and endoglucanase, making it a promising candidate for enzymatic industrial applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
World journal of microbiology & biotechnology
World journal of microbiology & biotechnology 工程技术-生物工程与应用微生物
CiteScore
6.30
自引率
2.40%
发文量
257
审稿时长
2.5 months
期刊介绍: World Journal of Microbiology and Biotechnology publishes research papers and review articles on all aspects of Microbiology and Microbial Biotechnology. Since its foundation, the Journal has provided a forum for research work directed toward finding microbiological and biotechnological solutions to global problems. As many of these problems, including crop productivity, public health and waste management, have major impacts in the developing world, the Journal especially reports on advances for and from developing regions. Some topics are not within the scope of the Journal. Please do not submit your manuscript if it falls into one of the following categories: · Virology · Simple isolation of microbes from local sources · Simple descriptions of an environment or reports on a procedure · Veterinary, agricultural and clinical topics in which the main focus is not on a microorganism · Data reporting on host response to microbes · Optimization of a procedure · Description of the biological effects of not fully identified compounds or undefined extracts of natural origin · Data on not fully purified enzymes or procedures in which they are applied All articles published in the Journal are independently refereed.
期刊最新文献
Current insights into molecular mechanisms of environmental stress tolerance in Cyanobacteria. Isolation and structure determination of a new antibacterial lanthipeptide derived from the marine derived bacterium Lysinibacillus sp.CTST325. The legacy of endophytes for the formation of bioactive agents, pigments, biofertilizers, nanoparticles and bioremediation of environment. Fungal lignocellulolytic enzymes: an in silico and full factorial design approach. Fitness and adaptive evolution of a Rhodococcus sp. harboring dioxin-catabolic plasmids.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1