AI-assisted exposure-response data analysis: Quantifying heterogeneous causal effects of exposures on survival times.

Global Epidemiology Pub Date : 2024-12-25 eCollection Date: 2025-06-01 DOI:10.1016/j.gloepi.2024.100179
Louis Anthony Cox, R Jeffrey Lewis, Saumitra V Rege, Shubham Singh
{"title":"AI-assisted exposure-response data analysis: Quantifying heterogeneous causal effects of exposures on survival times.","authors":"Louis Anthony Cox, R Jeffrey Lewis, Saumitra V Rege, Shubham Singh","doi":"10.1016/j.gloepi.2024.100179","DOIUrl":null,"url":null,"abstract":"<p><p>AI-assisted data analysis can help risk analysts better understand exposure-response relationships by making it relatively easy to apply advanced statistical and machine learning methods, check their assumptions, and interpret their results. This paper demonstrates the potential of large language models (LLMs), such as ChatGPT, to facilitate statistical analyses, including survival data analyses, for health risk assessments. Through AI-guided analyses using relatively recent and advanced methods such as Individual Conditional Expectation (ICE) plots using Random Survival Forests and Heterogeneous Treatment Effects (HTEs) estimated using Causal Survival Forests, population-level exposure-response functions can be disaggregated into individual-level exposure-response functions. These reveal the extent of heterogeneity in risks across individuals for different levels of exposure, holding other variables fixed. By applying these methods to an illustrative dataset on blood lead levels (BLL) and mortality risk among never-smoker men from the NHANES III survey, we show how AI can clarify inter-individual variations in exposure-associated risks. The results add insights not easily obtained from traditional parametric or semi-parametric models such as logistic regression and Cox proportional hazards models, illustrating the advantages of non-parametric approaches for quantifying heterogeneous causal effects on survival times. This paper also suggests some practical implications of using AI in regulatory health risk assessments and public policy decisions.</p>","PeriodicalId":36311,"journal":{"name":"Global Epidemiology","volume":"9 ","pages":"100179"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11757793/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.gloepi.2024.100179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

AI-assisted data analysis can help risk analysts better understand exposure-response relationships by making it relatively easy to apply advanced statistical and machine learning methods, check their assumptions, and interpret their results. This paper demonstrates the potential of large language models (LLMs), such as ChatGPT, to facilitate statistical analyses, including survival data analyses, for health risk assessments. Through AI-guided analyses using relatively recent and advanced methods such as Individual Conditional Expectation (ICE) plots using Random Survival Forests and Heterogeneous Treatment Effects (HTEs) estimated using Causal Survival Forests, population-level exposure-response functions can be disaggregated into individual-level exposure-response functions. These reveal the extent of heterogeneity in risks across individuals for different levels of exposure, holding other variables fixed. By applying these methods to an illustrative dataset on blood lead levels (BLL) and mortality risk among never-smoker men from the NHANES III survey, we show how AI can clarify inter-individual variations in exposure-associated risks. The results add insights not easily obtained from traditional parametric or semi-parametric models such as logistic regression and Cox proportional hazards models, illustrating the advantages of non-parametric approaches for quantifying heterogeneous causal effects on survival times. This paper also suggests some practical implications of using AI in regulatory health risk assessments and public policy decisions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Global Epidemiology
Global Epidemiology Medicine-Infectious Diseases
CiteScore
5.00
自引率
0.00%
发文量
22
审稿时长
39 days
期刊最新文献
Interaction between opium use and cigarette smoking on bladder cancer: An inverse probability weighting approach based on a multicenter case-control study in Iran. ACCREDIT: Validation of clinical score for progression of COVID-19 while hospitalized. Lower limb lymphoedema-related mental depression: A systematic review and meta-analysis of non-cancer-related studies. AI-assisted exposure-response data analysis: Quantifying heterogeneous causal effects of exposures on survival times. The need for methodological pluralism in epidemiological modelling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1